摘 要: 針對半色調(diào)圖像分類中只存在0和1的特點(diǎn),,提出了一種基于改進(jìn)的協(xié)方差矩陣在半色調(diào)圖像中的分類方法。根據(jù)協(xié)方差矩陣在實(shí)現(xiàn)半色調(diào)圖像分類中個(gè)數(shù)少且并未體現(xiàn)其局部和全局信息的特性,,對協(xié)方差矩陣的底層特征進(jìn)行改進(jìn),。利用樣本的局部特性和核密度估計(jì)方法,實(shí)現(xiàn)黎曼流形上的貝葉斯分類策略,。實(shí)驗(yàn)中研究協(xié)方差矩陣的底層特征與傳統(tǒng)協(xié)方差矩陣的特征提取方法并對其進(jìn)行分類性能比較,。實(shí)驗(yàn)結(jié)果表明,在半色調(diào)圖像分類中,,與傳統(tǒng)的協(xié)方差矩陣相比較,,改進(jìn)的協(xié)方差矩陣提取出的特征在分類中平均錯(cuò)誤分類率更低。
關(guān)鍵詞: 半色調(diào)圖像,;協(xié)方差矩陣,;黎曼流形;最近鄰分類器
0 引言
數(shù)字半色調(diào)(也稱為空間抖動(dòng))始于19世紀(jì)50年代,,是將一幅連續(xù)色調(diào)的圖像先進(jìn)行二值化處理,再用這些黑白二色的點(diǎn)來表示各個(gè)等級灰度的技術(shù)[1],。數(shù)字半色調(diào)技術(shù)已廣泛應(yīng)用于傳真,、打印、印刷,、顯示設(shè)備及數(shù)字圖像的壓縮存儲(chǔ)等領(lǐng)域,。較常用的數(shù)字半色調(diào)方法有:有序抖動(dòng)法[2]、誤差分散法[3],、點(diǎn)分散法[4],、綠噪聲半調(diào)法[5]等。通過分析現(xiàn)有的半色調(diào)技術(shù)可知,,不同半色調(diào)技術(shù)應(yīng)用于多級圖像時(shí)將產(chǎn)生具有各自不同特性的半色調(diào)圖像[6],,有周期性、點(diǎn)分布,、點(diǎn)分散性,、點(diǎn)相關(guān)性等,。當(dāng)通用型逆半色調(diào)技術(shù)用于某種半色調(diào)圖像的重建時(shí),將缺少相關(guān)半色調(diào)模式信息,,所以較難獲得半色調(diào)圖像的最優(yōu)重建,。
目前數(shù)字半色調(diào)圖像分類方法的研究比較少。Chang[7]首先對半色調(diào)圖像分類進(jìn)行研究,,指出在半色調(diào)圖像恢復(fù)成連續(xù)灰度圖像之前運(yùn)用一維自相關(guān)函數(shù),,提取出四類半色調(diào)圖像,最后用BP神經(jīng)網(wǎng)絡(luò)進(jìn)行分類,。雖然該方法分類結(jié)果有時(shí)能達(dá)到100%,,但獲取的類別比較少。文志強(qiáng)[1,,8]提出一種在3個(gè)方向上利用像素自相關(guān)特征進(jìn)行同或運(yùn)算來描述紋理特征的有監(jiān)督流形上的半色調(diào)分類方法,,利用圖像分塊的思想獲取紋理特征,目的在于提高建模效率和紋理特征的有效性,。
以上方法都基于歐式空間,,本文提出的方法需在黎曼空間上進(jìn)行特征匹配,再利用黎曼距離和局部概率密度來實(shí)現(xiàn)對半色調(diào)圖像的分類,。黎曼流形是具有黎曼度量的微分流形,,即有一個(gè)對稱正定協(xié)變的二階張量場在這個(gè)流形上,相比于歐式空間,,具有更豐富的黎曼度量方法,,是研究概率分布和模式匹配的有效工具。
1 傳統(tǒng)協(xié)方差矩陣建模方法
通過多種半色調(diào)技術(shù)可將多級灰度圖像轉(zhuǎn)化為半色調(diào)圖像樣本,,并對其進(jìn)行分類,。12種常用半色調(diào)技術(shù),如表1所示,。圖1給出相應(yīng)的12幅灰度圖像產(chǎn)生的半色調(diào)圖像(以lena(大?。?56×256)為例)。由圖1可知,,不同半色調(diào)技術(shù)產(chǎn)生的半色調(diào)圖像具有不同的紋理特征,。一些半色調(diào)圖像紋理比較明顯,如圖1中的(a),、(g),、(h)、(i)子圖,;另一些紋理差別不明顯,,分類較困難,如圖1中(b)、(c),、(e)和(l)子圖難以區(qū)分,,子圖(d)、(f),、(j)和(k)區(qū)別也較小,。由分析可知,造成半色調(diào)圖像分類錯(cuò)誤率高的最主要原因是紋理差別不明顯,。因此,,本文在半色調(diào)圖像上對協(xié)方差矩陣改進(jìn)之后再進(jìn)行構(gòu)建與分類。
協(xié)方差矩陣[13-14](Covariance matrix,,COV)是概率論,、統(tǒng)計(jì)學(xué)的一個(gè)概念,通過不同維度計(jì)算協(xié)方差構(gòu)成的矩陣,,衡量兩個(gè)隨機(jī)變量的變化,。協(xié)方差矩陣表示一個(gè)多維隨機(jī)變量各個(gè)維度之間的相關(guān)性。協(xié)方差矩陣于2006年被Tuzel O,,Porikli F[15]作為描述子最先應(yīng)用在醫(yī)學(xué)圖像處理的目標(biāo)檢測中,,能夠很好地描述圖像,因?yàn)閷⑵溆糜趫D像特征提取時(shí),,將區(qū)域圖像不同的特征值通過統(tǒng)計(jì)矢量的方式統(tǒng)一于協(xié)方差矩陣中,。COV作為描述子具有很好的魯棒性,對外部形態(tài)和光照的改變能很好地維持其主要特征的不變性,,所以可將COV應(yīng)用于半色調(diào)圖像的特征提取中[16],。
COV定義如下:
設(shè)I為一維強(qiáng)度或三維強(qiáng)度的彩色圖像,f為原圖I內(nèi)具有M×N個(gè)像素的區(qū)域圖像,,h為該區(qū)域f內(nèi)提取的d維特征向量,,如式(1)所示:
將區(qū)域f每個(gè)像素的特征向量通過共生關(guān)系統(tǒng)一到協(xié)方差矩陣C中,如式(2)所示:
其中,,h(x,,y)為區(qū)域矩陣每個(gè)元素的特征向量,u為M×N個(gè)dx1維特征向量h(x,,y)的均值,,h(x,,y)表示區(qū)域圖像每個(gè)像素的底層特征,,如式(3)所示:
h(x,y)=[|fxx|,,|fyy|,,|fx|,|fy|,f(x,,y)]T(3)
式(2)中C(f)為協(xié)方差矩陣,,融合了原始圖像底層的五個(gè)特征,等價(jià)于公式(4):
C(f)=HHT(4)
由公式(1)~(4)可知,,COV能夠較好地表示圖像的特征,,且具有如下優(yōu)點(diǎn):
(1)很好的辨識度,。能夠?qū)^(qū)域圖像多種特征融合于COV中,。
(2)更低的維數(shù),。COV是一個(gè)對稱的半正定矩陣,,所以d維的特征向量構(gòu)成的協(xié)方差矩陣具有(d2+d)/2個(gè)不同值。
?。?)很好的魯棒性,。將一幅圖像旋轉(zhuǎn)后,若選取的特征適當(dāng),,則形成的COV不發(fā)生相應(yīng)的改變,。
2 改進(jìn)的協(xié)方差矩陣建模方法
COV雖然有很多優(yōu)點(diǎn),但也存在不足,。由公式(2)可知,,當(dāng)h(x,y)=u時(shí),,協(xié)方差矩陣的行列式有可能為0,,所以準(zhǔn)確地講,協(xié)方差矩陣應(yīng)屬半正定矩陣,,針對該問題可采用附加一個(gè)足夠小的對角矩陣p來進(jìn)行預(yù)處理,。
可以看到,圖1中12幅半色調(diào)圖像的紋理不明顯,,分類較困難,。針對這一難點(diǎn),可將半色調(diào)圖像求梯度,,即通過梯度信息來描述圖像中物體的邊緣,、輪廓、形狀等紋理特征,。對圖像加入水平邊緣算子[-1,,0,1]和垂直邊緣算子[-1,,0,,1]T,并將該特征加入?yún)f(xié)方差矩陣的底層特征中。所以提出改進(jìn)的協(xié)方差矩陣(Improved covariance matrix,,ICM),。
本文獲取區(qū)域半色調(diào)圖像f的底層特征如公式(5)所示,通過公式(2)將其構(gòu)成COV,。
h(x,,y)=[x,y,,|fx|,,|fxx|,|fy|,,|fyy|,,f(x,y),,
其中,,x,y分別為區(qū)域半色調(diào)圖像的坐標(biāo)值,,f(x,,y)設(shè)定以位置(x,y)為中心的n×n(實(shí)驗(yàn)中n取9)鄰域各個(gè)像素值之和,,|fx|,、|fxx|為像素值在x方向的一階、二階導(dǎo),,|fy|,、|fyy|為像素值在y方向的一階、二階導(dǎo),。arctan|fy|/(|fx|+p)為f(x,,y)在位置(x,y)處的梯度,。由于協(xié)方差矩陣的行列式有可能為0,,所以添加一個(gè)無窮小量。S1(x,,y)=(|Ix|*|Ix|+|Iy|*|Iy|+|fx|*|fx|+|fy|*|fy|),,其中Ix為水平邊緣梯度,Iy為垂直邊緣梯度,。S2(x,,y)=arctan|Iy|/(|Ix|+p)。圖2為對應(yīng)圖1中ICM特征圖像示例圖,。由圖2可知,,各矩陣的特征圖都有一定的差別,這說明提取的特征矩陣可用于描述半色調(diào)圖像,。即加入梯度算子后,,圖像的輪廓明顯變得更清晰。將梯度算子加入COV的底層特征后,,特征更明顯,,更容易區(qū)分圖像的紋理信息。ICM算法實(shí)現(xiàn)步驟如下:
算法:ICM算子的構(gòu)造
輸入:一幅大小為M×N的區(qū)域半色調(diào)圖像f
輸出:能夠表征原始半色調(diào)圖像的改進(jìn)協(xié)方差矩陣
Step1 根據(jù)公式(5)獲取區(qū)域半色調(diào)圖像的十個(gè)底層特征,,分別是x,,y,|fx|,,|fxx|,,|fy|,|fyy|,,f(x,,y),arctan|fy|/(|fx|+p),,S1(x,,y),S2(x,,y),;
Step2根據(jù)公式(2)計(jì)算區(qū)域半色調(diào)圖像f的協(xié)方差 矩陣C(f)。
3 實(shí)驗(yàn)結(jié)果及比較
3.1 實(shí)驗(yàn)環(huán)境
本實(shí)驗(yàn)在Windows 7操作系統(tǒng)環(huán)境下進(jìn)行,,采用VC6.0結(jié)合OpenCV 1.0及MATLAB 7.11進(jìn)行編程,。常用半色調(diào)圖像由VC6.0結(jié)合OpenCV 1.0產(chǎn)生,ICM特征的提取使用MATLAB 7.11生成,。
3.2 實(shí)驗(yàn)結(jié)果
對原始圖像產(chǎn)生12類常用半色調(diào)圖像庫,,對每類隨機(jī)取出410幅樣本(大小為256×256)。對每幅圖像提取ICM特征,,之后從每類410個(gè)協(xié)方差矩陣的特征中隨機(jī)抽取205個(gè)作為訓(xùn)練樣本,,剩余205個(gè)作為測試樣本。為驗(yàn)證提出方法的有效性,,取相同K值不同類型的特征矩陣在黎曼流形上采用K最近鄰分類器對紋理特征進(jìn)行分類?,F(xiàn)取K=23,應(yīng)用傳統(tǒng)的協(xié)方差矩陣與本文提出方法對隨機(jī)取出的410×12幅圖像進(jìn)行分類,,比較其分類精度如表2和表3所示,。
由表2可知,采用傳統(tǒng)協(xié)方差矩陣對12類常用的半色調(diào)圖像的平均分類正確率為83.487 5%,,由表3可知,,提出方法對12類常用半色調(diào)圖像的平均分類正確率為92.598 3%,。比較表明,本文所提出的方法有所改善,。
3.3 參數(shù)影響
對于多類別(類別數(shù)大于2)投票時(shí)可能會(huì)出現(xiàn)兩種或多種類別票數(shù)相同問題,,這種情況下分類器取K個(gè)近鄰值中最小值對應(yīng)的類別為最終類別。分類結(jié)果性能采用平均分類錯(cuò)誤率(公式(7))和分類錯(cuò)誤方差率(公式(8))來評價(jià),,其中公式(6)為錯(cuò)誤分類率,。平均分類錯(cuò)誤率越小說明分類效果越好,分類錯(cuò)誤方差率越小說明分類器越穩(wěn)定,。
其中,,nj為測試樣本總數(shù),mj為正確分類樣本數(shù),,N為總的類別數(shù)(N=12),,j為類別數(shù),j=1,,2,,…,12,。
本實(shí)驗(yàn)測試不同K值對相同類型的影響,。由12類常用半色調(diào)圖像變更不同的K值,分別取11,,15,,19,23,,27,,31,35七個(gè)值來比較傳統(tǒng)協(xié)方差矩陣和提出方法提取特征矩陣對其進(jìn)行eave和v比較,,折線圖比較如圖3和圖4所示,。由圖3可知,常用12類半色調(diào)圖像的分類中,,COV在K=19時(shí)分類效果最好,,ICM在K=23時(shí)分類效果最好。但不管K為何值,,提出方法效果均優(yōu)于COV,。由圖4的v折線圖可知,COV在K=23時(shí)分類器最穩(wěn)定,,ICM在K=27時(shí)v最小,,此時(shí)的分類器性能最穩(wěn)定。不管K為何值,,本文提出方法的分類器更穩(wěn)定,。由此證明,,提出方法的有效性。
4 總結(jié)
針對12類常用半色調(diào)圖像的分類問題,,對半色調(diào)圖像的特征建模和分類方法進(jìn)行了深入研究,,提出對傳統(tǒng)的協(xié)方差矩陣進(jìn)行改進(jìn),并用黎曼流形上的K最近鄰方法對提取出的特征矩陣進(jìn)行分類,。通過比較分類精度來驗(yàn)證提出方法的有效性。實(shí)驗(yàn)證明,,將傳統(tǒng)的協(xié)方差矩陣與提出方法進(jìn)行eave和v比較,,可知提出方法在K=23時(shí),eave最低,,即分類效果最好,;在K=27時(shí),v最小,,即分類器性能最穩(wěn)定,,所以在選擇K值時(shí)應(yīng)視需求而定。
參考文獻(xiàn)
[1] 文志強(qiáng),,胡永祥,,朱文球.基于統(tǒng)計(jì)量模板的半色調(diào)圖像特征提取與分類[J].計(jì)算機(jī)科學(xué),2013,,40(12):94-112.
[2] LIU Y F,, GUO J M. New class tiling design for dot-diffused halftoning[J]. IEEE Trans. on Image Process, 2013,,2(3): 1199-1208.
[3] STEVENSON R. Inverse halftoning via MAP estimation[J].IEEE Trans. on Image Processing,, 1997, 6(4): 574-583.
[4] MESE M,, VAIDYANATHAN P P. Recent advances in digital halftoning and inverse halftoning methods[J]. IEEE Trans. on Ciruits and Systems: Fundamental Theory and Applications,, 2002,49(6): 790-805.
[5] LIU Y F,, GUO J M,, LEE J D. Inverse halftoning based on the Bayesian theorem[J]. IEEE Trans. on Image Process, 2011,, 20(4): 1077-1084.
[6] 文志強(qiáng),,胡永祥,朱文球.黎曼流形上半調(diào)圖像的協(xié)方差建模與貝葉斯分類方法[J].模式識別與人工智能,,2013,,26(11):993-1003.
[7] CHANG P C, YU C S. Neural net classification and LMS reconstruction to halftone images[C]. Proc. of the SPIE Visual Communications and Image Processing,, San Jose,, USA,, 1998: 592-602.
[8] Wen Zhiqiang, Hu Yongxiang,, Zhu Wenqiu. A novel classification method of halftone image via statistics matrices[J]. IEEE Trans. on Image Process,, 2014, 23(11): 4724-4736.
[9] GUO J M,, LIU Y F,, CHANG J Y, et al. Efficient halftoning based on multiple look-up tables[J]. IEEE Trans. on Image Process,, 2013,, 22(11):4522-4531.
[10] MESE M, VAIDYANATHAN P P. Recent advances in digital halftoning and inverse halftoning methods[J]. Circuits and Systems I: Fundamental Theory and Applications,, IEEE Transactions on,, 2002,49(6):790-805.
[11] ULICHNEY R. Digital halftoning and the physical reconstruction function[C]. Ph. D Dissertation. Cambridge,, USA: Massachusetts Institute of Technology,, 1986.
[12] KNUTH D E. Digital halftones by dot diffusion[J]. ACM Trans. on Graphics, 1987,, 6(4):245-273.
[13] MESE M,, VAIDYANATHAN P P. Optimized halftoning using dot diffusion and methods for inverse halftoning[J]. IEEE Trans. on Images Process, 2000,,9(4):691-709.
[14] WU Y,, CHENG J, WANG J,, et al. Real-time probabilistic covariance tracking with efficient model update[J]. IEEE Trans. on Image Process,, 2012,21(5):2824-2837 .
[15] PORIKLI F,, TUZEL O,, MEER P. Covariance tracking using model update based on lie algebra[C]. Computer Vision and Pattern Recognition, 2006 IEEE Computer Society Conference on. IEEE,, 2006:728-735.
[16] Wen Zhiqiang,, Hu Yongxiang, Zhu Wenqiu. Bayesian classification of halftone image based on region covariance[J]. Intelligent System Design and Engineering Applications,, 2013(3):398-401.