《電子技術(shù)應用》
您所在的位置:首頁 > 可編程邏輯 > 設(shè)計應用 > 基于MSP430和FPGA的風光逆變并網(wǎng)系統(tǒng)
基于MSP430和FPGA的風光逆變并網(wǎng)系統(tǒng)
摘要: 系統(tǒng)的功率電路部分采用全橋拓撲進行逆變,,數(shù)字控制系統(tǒng)采用MCU+FPGA構(gòu)架,。由全硬件完成對外網(wǎng)市電的倍頻工作,,再由FPGA動態(tài)調(diào)整系統(tǒng)輸出相位,,讓輸出和外網(wǎng)市電實現(xiàn)同相位,。MCU完成對太陽能電池板的最大功率點追蹤(MPPT),,發(fā)電端電壓欠壓檢測以及孤島效應檢測等功能,。
Abstract:
Key words :

    為了緩解能源問題,,在完全兼容現(xiàn)有供電系統(tǒng)的基礎(chǔ)上,,該系統(tǒng)采用風能和太陽能對電能進行補給的方法,并且附帶快速檢測孤島效應,,快速并網(wǎng)和斷網(wǎng)的功能,。系統(tǒng)的功率電路部分采用全橋拓撲進行逆變,數(shù)字控制系統(tǒng)采用MCU+FPGA構(gòu)架,。由全硬件完成對外網(wǎng)市電的倍頻工作,,再由FPGA動態(tài)調(diào)整系統(tǒng)輸出相位,讓輸出和外網(wǎng)市電實現(xiàn)同相位,。MCU完成對太陽能電池板的最大功率點追蹤(MPPT),,發(fā)電端電壓欠壓檢測以及孤島效應檢測等功能。針對電力系統(tǒng)強電的特性并結(jié)合當今熱門的物聯(lián)網(wǎng)技術(shù),,該系統(tǒng)人性化地設(shè)計了無線檢測的功能,,用戶能通過手機,計算機或者手持式終端就可以了解當前系統(tǒng)狀態(tài),。該系統(tǒng)創(chuàng)造性的設(shè)計方式既可以用于電廠的多能源并行發(fā)電,,也適合家用,讓家庭從用電的角色轉(zhuǎn)變微型發(fā)電廠,,從而大大的緩解能源問題,。

    近二百年來,人類利用煤,、石油及天燃氣作為能源,,使生產(chǎn)力提高近200倍。然而化石能源逐步枯竭,,而且污染等也很嚴重,。隨著能源問題的日益突出,尋找新型綠色能源已經(jīng)是刻不容緩的問題,。而在公認的綠色能源中,,數(shù)太陽能和風能是最容易獲取并高效利用的能源。

    本文以太陽能,,風能為中心,,設(shè)計一個風光并網(wǎng)發(fā)電的模擬裝置,,能夠?qū)⑻柲芑蛘唢L能發(fā)電機的直流電壓轉(zhuǎn)換為交流電,并檢測外網(wǎng)交流電的頻率和相位,,動態(tài)的調(diào)整自己的交流電的波形,,使得與外網(wǎng)電能同頻同相。該裝置在設(shè)計時考慮了發(fā)電機的內(nèi)阻,。在測試時以60 V直流穩(wěn)壓電源模擬理想的太陽能電池板或者風力發(fā)電機,,電源輸入級串聯(lián)一個30 Ω功率電阻模擬發(fā)電部分的內(nèi)阻。

    該裝置體積小巧,,成本低廉,,易于量產(chǎn),人界交互界面友好,,并附帶輸入電壓監(jiān)控,,輸出過流監(jiān)控實時動態(tài)相位監(jiān)控等多種監(jiān)控設(shè)置也使得該裝置安全性能很好。稍加改動即可廣泛應用,。

1 方案論證

1.1 主功率電路拓撲方案

方案一:全橋逆變,。

全橋由4只功率開關(guān)管管組成,分為2組,,其中Q1和Q4為一組,,Q2和Q3為一組,兩組交替通斷,,輸出交流方波電壓經(jīng)LC低通濾波器后得到交流正弦輸出電壓(見圖1),。全橋型逆變器的輸出濾波電容電壓連續(xù)可測的。該電路輸出經(jīng)LC濾波后便能得到很好的波形,。

基于MCU-FPGA的<a class=風光逆變" />

方案二:雙Boost DC/AC單級變換電路拓撲結(jié)構(gòu),。

該結(jié)構(gòu)由2個對稱的電流雙向流動的Boost DC/DC變換電路組成(見圖2)。負載R跨接在兩個電容之間,,通過兩邊電流的雙向流動,,從而在負載上實現(xiàn)交流工頻電壓輸出的效果。開關(guān)M1~M4均為由MOSFET和二極管組成的能量可以雙向流動的可控開關(guān),。由于電路工作在完全對稱的狀態(tài)下,,因此對L1和L2的選擇特別敏感,如果不對稱則會照成輸出波形失真,。

方案二在正弦的正半軸和負半軸是兩個濾波電路完成的,,所以在波形的失真度上完成有難度,而方案一是由同一個電感濾波得到的,,濾波后正弦失真度非常小,。故采用方案一。

1.2 正弦波產(chǎn)生方案

方案一:采用專用SPWM芯片實現(xiàn)逆變。

目前的SPWM專用芯片外圍電路簡單,,易于實現(xiàn),。但是很難完成本系統(tǒng)中對市電相位追蹤和調(diào)整。故不采用本方案,。

方案二:使用FPGA生成SPWM波形,。

此方案的優(yōu)點是容易精確方便地控制輸出正弦波的相位和幅度,而且外圍電路更加簡單,,靈活方便,。相對于方案一更優(yōu)化,故選擇此方案,。

1.3 整體系統(tǒng)設(shè)計構(gòu)架方案

總結(jié)上述選擇的方案,,這里選擇以數(shù)字電路為主,配合簡潔的模擬電路的結(jié)構(gòu),。充分的把數(shù)字的高集成度,高準確度,,高性價比和高穩(wěn)定性的特點和模擬大功率的特點有機的結(jié)合,,較好地實現(xiàn)了設(shè)計要求。并且拓展了無線監(jiān)測功能,,更加真實表現(xiàn)了本設(shè)計的實際應用環(huán)境和展現(xiàn)更加人性化的設(shè)計,。總體方案見圖3,。

基于MCU-FPGA的風光逆變并網(wǎng)系統(tǒng)設(shè)計

2 主回路電器選擇以及參數(shù)計算

系統(tǒng)主回路由DC-AC變換器電路以及對輸入/輸出波形的整形和測量電路構(gòu)成,。為了減少損耗,同時又防止被反向擊穿,,主開關(guān)管選IRFB52N15(額定電流60A,,耐壓150V,導通電阻32MΩ),。采用SPWM控制的逆變電路,,輸出SPWM波中含有大量的高頻諧波,加上防止上下橋臂直通而設(shè)置的死區(qū),,開關(guān)時間和功率器件參數(shù)差異等因素,,輸出電壓只能夠也含有一定的低次諧波,為了保證波形失真度盡可能低,,必須采用輸出濾波器,。全橋采用LC濾波,其中的感抗XL=ωL=2πfL,,容抗XC=1/(ωC)=1/(2πfC),。令ωL=1/(ωC),得到對應的截止頻率d.jpg設(shè)逆變器輸出電壓的基波為f0,最低次諧波頻率fk,,f0>1/(ωkC),電感對諧波信號阻抗很大,,電容對諧波信號的分流很大,,即濾波器不允許諧波信號通過負載,一般取濾波器的截止頻率fc=(3~5)f0,,為了避免對某次諧波過度放大,,取fc= 4.5f0=1 800 Hz,逆變器的輸出功率和輸出電壓求得負載阻抗RL,,濾波器的標稱特性阻抗R=(0.5~0.8)RL,,則Lf=R/(4πfC),Cf=Lf /R2= 1/(2πfCR),。實際電路中,,L取200 μH,C=470μF,。

3 控制與算法設(shè)計

該系統(tǒng)的MCU選擇的MSP430MSP430系列是TI公司推出的超低功耗16單片機,,性價比高,,功能強,運行的速度快,,其工作電流不到1mA,,而且其具有多種低功耗模式。該方案選用了MSP430F2618作為主控芯片,,監(jiān)測輸入電流,、電壓,,過流、欠壓時保護和故障排除后恢復,;采樣輸出電壓和電壓跟蹤最大功率,;顯示當前系統(tǒng)狀態(tài)和輸出的相關(guān)數(shù)據(jù)。

3.1 最大功率追蹤算法

最大功率點跟蹤算法根據(jù)判斷原理和實現(xiàn)方法,,大概可以歸納為六種:恒定電壓及其改進算法,、恒定電流及其改進算法、擾動觀察法,、增量電導法,、模糊邏輯控制算法及神經(jīng)網(wǎng)絡(luò)控制算法。

基于MCU-FPGA的風光逆變并網(wǎng)系統(tǒng)設(shè)計

擾動觀察法是一種較為簡單實用且容易實現(xiàn)的方法,,其思想是通過周期性的給電源的輸出電壓加擾動△V,,測得電源的輸出電流和電壓,比較該采樣時刻的輸出功率P(t)與前一采樣時刻輸出功率P(t-1)的大??;如果P(t)>P(t-1),則在下一周期以同樣方向加擾動,,否則改變擾動的方向,,這樣逐步逼近最大功率點。但跟蹤步長的設(shè)定無法兼顧跟蹤精度和響應速度,,在最大功率點附近振蕩運行,會導致一定功率損失,。

3.2 基于FPGA的相位追蹤

該系統(tǒng)中產(chǎn)生的SPWM信號的正弦基波信號是FPGA內(nèi)部的地址每次累加1位,,然后查詢FPGA內(nèi)存儲了正弦表的ROM,現(xiàn)將外部參考正弦信號和本系統(tǒng)自已產(chǎn)生的正弦波形通過比較器整形后的信號都輸入FPGA,,通過FPGA內(nèi)部的異或門后得到的新信號,,新信號為高表明兩路信號依然存在相位差,這時FPGA內(nèi)部的地址累加器遞增2位,,即讓自己產(chǎn)生的正弦波的相位向前遞增一個量化值,,直至兩路信號異或的結(jié)果完全為低為止。由于FPGA的高速運算,,整個相位的追蹤在兩個周期以內(nèi)可以完成,,能滿足市場應用的要求。

4 結(jié)語

該系統(tǒng)以MCU-FPGA為構(gòu)架,,實現(xiàn)了風光逆變并網(wǎng)系統(tǒng),。系統(tǒng)充分利用了數(shù)字系統(tǒng)的計算精度,將逆變波形與外網(wǎng)市電的相位差控制在2°以內(nèi),,并且通過最大功率追蹤,,讓太陽能電池板或者風力發(fā)電機的發(fā)電效率達到最大。該系統(tǒng)成本低,體積小,,且人性化設(shè)計,,方便今后直接大批量投入市場使用。

此內(nèi)容為AET網(wǎng)站原創(chuàng),,未經(jīng)授權(quán)禁止轉(zhuǎn)載,。