《電子技術(shù)應用》
您所在的位置:首頁 > 模擬設(shè)計 > 設(shè)計應用 > 全過程學業(yè)預警跟蹤評價系統(tǒng)的研究與實現(xiàn)
全過程學業(yè)預警跟蹤評價系統(tǒng)的研究與實現(xiàn)
電子技術(shù)應用
李啟鵬1,,曾松偉2
1.浙江農(nóng)林大學 數(shù)學與計算機科學學院;2.浙江農(nóng)林大學 光機電工程學院
摘要: 傳統(tǒng)的學業(yè)預警系統(tǒng)通常更多關(guān)注學生的成績,、考勤等終結(jié)性指標,,并在這些指標達到特定條件時觸發(fā)預警。所研究的學業(yè)預警系統(tǒng)采用了全過程化監(jiān)測預警方法,,不僅對學生的期末成績,、年度考核、出勤等常規(guī)指標進行監(jiān)測,,還對學生的課堂表現(xiàn),、課后作業(yè),、團隊考核、思想政治考核,、經(jīng)濟壓力等進行全面跟蹤,、分析與評價。同時根據(jù)本科生導師制實施細則,,發(fā)動各導師積極參與到學業(yè)預警活動中,,作為學生學習過程中的重要指導者,,跟蹤和評估學生的學業(yè)表現(xiàn),并提供及時,、有效,、精準的學業(yè)指導,實現(xiàn)了從發(fā)出預警到指導效果的全程,、閉環(huán)監(jiān)控,。采用粒子群算法(PSO)優(yōu)化支持向量機(SVM),并結(jié)合Web與小程序技術(shù),,實現(xiàn)了全過程學業(yè)預警跟蹤評價系統(tǒng),,有效提升了預警的精準度和時效性,,填補了傳統(tǒng)學業(yè)預警系統(tǒng)的不足。該系統(tǒng)對于提高學生學業(yè)質(zhì)量具有重要意義,,同時也為其他高校的學業(yè)預警幫扶系統(tǒng)提供參考。
中圖分類號:G456;TP311.1,;TP399 文獻標志碼:A DOI: 10.16157/j.issn.0258-7998.245298
中文引用格式: 李啟鵬,,曾松偉. 全過程學業(yè)預警跟蹤評價系統(tǒng)的研究與實現(xiàn)[J]. 電子技術(shù)應用,,2025,51(2):86-92.
英文引用格式: Li Qipeng,,Zeng Songwei. Research and implementation of a full-process academic early warning and tracking evaluation system[J]. Application of Electronic Technique,2025,,51(2):86-92.
Research and implementation of a full-process academic early warning and tracking evaluation system
Li Qipeng1,Zeng Songwei2
1.College of Mathematics and Computer Science,, Zhejiang A&F University; 2.College of Optical,, Mechanical and Electrical Engineering
Abstract: Traditional academic warning systems usually focus more on terminal indicators such as students’ grades and attendance, and trigger warnings when these indicators meet specific conditions. The academic warning system studied in this paper adopts a whole-process monitoring and warning method, which not only monitors conventional indicators such as students’ final grades, annual assessments, and attendance, but also comprehensively tracks, analyzes and evaluates students’ classroom performance, homework after class, team assessments, ideological and political assessments, and economic pressure, etc. Meanwhile, based on the implementation rules of the undergraduate tutor system, all tutors are encouraged to actively participate in academic warning activities. As important mentors in the learning process of students, they track and evaluate students’ academic performance, and provide timely, effective, and precise academic guidance, realizing the whole-process and closed-loop monitoring from issuing warnings to guiding effects. This paper uses Particle Swarm Optimization (PSO) to optimize Support Vector Machine (SVM), and combines Web and mini-program technology to implement a whole-process academic warning tracking and evaluation system, which effectively improves the accuracy and timeliness of warnings, filling in the gaps of traditional academic warning systems. This system is of great significance for improving the quality of students’ academic performance, and also provides a reference for academic warning support systems in other universities.
Key words : academic early warning,;dual mentorship;whole process,;mutual assistance and mutual supervision;multidimensional data-drive

引言

隨著中國高等教育規(guī)模的不斷擴大,,高等教育已經(jīng)從精英化教育轉(zhuǎn)向普及化教育,如何保證學生的高質(zhì)量培養(yǎng)已成為高校教育管理亟待解決的問題[1],。在此背景下,,學業(yè)全過程預警機制應運而生,,成為高校提高教學質(zhì)量的有效措施[2-3]。

學業(yè)預警機制是指通過對學生學習狀態(tài)和成績情況進行監(jiān)測和評估,,及時發(fā)現(xiàn)并干預存在學業(yè)風險的學生,從而最大限度地提高學生培養(yǎng)質(zhì)量的一種管理方法,。該機制不僅關(guān)注學生個性化需求,同時也涉及教學體系,、教師隊伍的建設(shè)和優(yōu)化等方面,。

建立學業(yè)過程預警機制不僅可以幫助學校提高教學效果,,還可以“讓學生忙起來、讓教學活起來,、讓管理嚴起來”,。及時發(fā)現(xiàn)存在學業(yè)風險的學生并采取適當?shù)母深A措施幫助他們調(diào)整學習狀態(tài),、提高學習效率是至關(guān)重要的;另外,,學校還應加強與學生的互動和溝通,,以更好地了解他們的真實需求和反饋,。通過這種方式,可以激發(fā)學生的學習熱情和創(chuàng)新能力,,促使他們更積極地投入到學習當中,。此外,建立學業(yè)預警機制還可以促進高校管理的嚴格化,、規(guī)范化和信息化,,實現(xiàn)數(shù)字賦能,為高校教育管理提供有力保障,,為推動我國教育事業(yè)的發(fā)展做出積極貢獻。


本文詳細內(nèi)容請下載:

http://wldgj.com/resource/share/2000006331


作者信息:

李啟鵬1,,曾松偉2

(1.浙江農(nóng)林大學 數(shù)學與計算機科學學院,,浙江 杭州 311300,;

2.浙江農(nóng)林大學 光機電工程學院,浙江 杭州 311300)


Magazine.Subscription.jpg

此內(nèi)容為AET網(wǎng)站原創(chuàng),,未經(jīng)授權(quán)禁止轉(zhuǎn)載。