《電子技術(shù)應(yīng)用》
您所在的位置:首頁(yè) > 通信與網(wǎng)絡(luò) > 業(yè)界動(dòng)態(tài) > 人機(jī)大戰(zhàn),!AI醫(yī)生是如何戰(zhàn)勝25位人類(lèi)醫(yī)生的,?

人機(jī)大戰(zhàn),!AI醫(yī)生是如何戰(zhàn)勝25位人類(lèi)醫(yī)生的,?

2018-08-10
關(guān)鍵詞: 人工智能 醫(yī)生

  結(jié)局超出了不少醫(yī)生的預(yù)想,就像AlphaGo參加的圍棋之戰(zhàn)一樣。

  這是全球首場(chǎng)神經(jīng)影像領(lǐng)域的“人機(jī)大戰(zhàn)”。

  人類(lèi)戰(zhàn)隊(duì)由25名神經(jīng)影像領(lǐng)域的頂尖專(zhuān)家,、學(xué)者以及優(yōu)秀的臨床醫(yī)生組成,與他們對(duì)戰(zhàn)的,,是北京天壇醫(yī)院“神經(jīng)疾病人工智能研究中心”和首都醫(yī)科大學(xué)人腦保護(hù)高精尖創(chuàng)新中心共同研發(fā)的AI輔助診斷系統(tǒng)“BioMind天醫(yī)智”,。

  6月30日的總決賽現(xiàn)場(chǎng),最終AI選手以高出20%的正確率,,戰(zhàn)勝了神經(jīng)系統(tǒng)疾病診斷的醫(yī)界“最強(qiáng)大腦”,。

  這位醫(yī)學(xué)界“新星”究竟有多大本事?它的深度學(xué)習(xí)經(jīng)歷了怎樣的訓(xùn)練,?它會(huì)替代臨床醫(yī)生嗎,?

  戰(zhàn)勝25位人類(lèi)醫(yī)生

  當(dāng)天的比賽被分成了兩個(gè)組別,其中A組進(jìn)行的是顱內(nèi)腫瘤磁共振檢查(MRI)影像判讀,;B組進(jìn)行腦血管疾病CT影像判讀及血腫預(yù)測(cè),。

  前者要對(duì)腦腫瘤作出定性,后者驗(yàn)證腦出血第一次血腫擴(kuò)大的風(fēng)險(xiǎn),。

  首輪15位參賽醫(yī)生,每人對(duì)15例影像進(jìn)行判讀,,共225例,。

  同時(shí),相同數(shù)量的病例,,AI選手耗時(shí)15分鐘判讀完畢,,準(zhǔn)確率最先顯示為87%。又過(guò)了15分鐘,,計(jì)時(shí)結(jié)束,,人類(lèi)戰(zhàn)隊(duì)的成績(jī)定格在66%。

  這并沒(méi)有打擊醫(yī)生們的自信心,。

  事實(shí)上,,在第二輪比賽中,10位醫(yī)生不僅率先完成判讀,,還就其中不確定的答案進(jìn)行了二次矯正,。

  然而,卡著點(diǎn)交卷的AI選手還是以83%對(duì)63%的準(zhǔn)確率,,再次獲勝,。

  這個(gè)結(jié)果足以讓現(xiàn)場(chǎng)和通過(guò)直播視頻觀戰(zhàn)的一線大夫們“消化”一段時(shí)間,。

  不過(guò),就在比賽結(jié)束的那一刻,,北京天壇醫(yī)院神經(jīng)影像學(xué)中心主任高培毅和血管神經(jīng)病學(xué)中心副主任醫(yī)師李娜算是放下了懸著的心,,對(duì)AI選手長(zhǎng)達(dá)半年的訓(xùn)練沒(méi)有白費(fèi)。

  同樣感到欣慰的,,還有BioMind創(chuàng)始人兼技術(shù)總監(jiān)吳振洲,。

  對(duì)他們來(lái)說(shuō),AI當(dāng)天的表現(xiàn)屬意料之中,。

  高培毅提到,,在前期的練習(xí)中,它對(duì)腦腫瘤判定的準(zhǔn)確率一度可達(dá)到95%,。

  但這不意味著醫(yī)生戰(zhàn)隊(duì)的表現(xiàn)就有失水準(zhǔn),。

  高培毅坦言,結(jié)果顯示的就是國(guó)際上神經(jīng)影像判讀的正常水平,。

  需要指出的是,,由于比賽人為增加了難度,如果回到現(xiàn)實(shí)場(chǎng)景中,,醫(yī)生對(duì)腦腫瘤判定的準(zhǔn)確率會(huì)高于比賽時(shí)的結(jié)果,,與AI的差距更小。

  國(guó)家神經(jīng)系統(tǒng)疾病臨床醫(yī)學(xué)研究中心副主任,、天壇醫(yī)院常務(wù)副院長(zhǎng)王擁軍認(rèn)為,,這場(chǎng)人機(jī)大戰(zhàn)的目的是“教育”。

  它可以解答許多臨床醫(yī)生的疑問(wèn):人工智能究竟有多大本事,,以及我們是否會(huì)被替代,?

  “與AlphaGo戰(zhàn)勝圍棋9段選手一樣,并不是AI的智力超越了人類(lèi),,只是它們更勤奮,,學(xué)習(xí)速度和穩(wěn)定性都可以達(dá)到極致?!蓖鯎碥姳硎?,作為一種工具,它必定能在某一單一特定任務(wù)中超越我們,。

  然而,,醫(yī)學(xué)并非單一的科學(xué)問(wèn)題,臨床醫(yī)學(xué)也不是千篇一律的,,病人的治療,、預(yù)后要結(jié)合家族史、社會(huì)經(jīng)濟(jì)地位等各種復(fù)雜因素,任何信息的微小變化都會(huì)引起復(fù)雜決策系統(tǒng)的波動(dòng),,使醫(yī)生產(chǎn)生截然不同的判斷,。

  醫(yī)生這個(gè)職業(yè)不會(huì)消失。

  “因此,,我們對(duì)待人工智能,,既不要小看它,也不必恐懼它,?!蓖鯎碥姳硎尽?/p>

  能看到醫(yī)生肉眼看不到的

  人工智能與醫(yī)療的結(jié)合,,是解決醫(yī)療“痛點(diǎn)”的新機(jī)遇,。業(yè)內(nèi)人士認(rèn)為,將AI具體應(yīng)用在醫(yī)學(xué)影像的輔助診斷上,,是最有可能率先實(shí)現(xiàn)商業(yè)化的,。

  一方面,醫(yī)療數(shù)據(jù)中有大量數(shù)據(jù)來(lái)自于醫(yī)學(xué)影像,,但這些數(shù)據(jù)幾乎全部需要人工分析,,而相應(yīng)的醫(yī)療從業(yè)人員卻非常短缺。

  有研究表明,,目前我國(guó)醫(yī)學(xué)影像數(shù)據(jù)年增長(zhǎng)率約為30%,,而放射科醫(yī)師數(shù)量年增長(zhǎng)率只有約4%,人工處理影像數(shù)據(jù)的負(fù)荷會(huì)越來(lái)越大,。

  高培毅希望,,AI能把醫(yī)生從一部分低附加值的、重復(fù)性的工作中解放出來(lái),,比如,,“BioMind天醫(yī)智”系統(tǒng)正式應(yīng)用后,至少可以替代醫(yī)生20%的工作時(shí)間,。

  另一方面,中國(guó)優(yōu)質(zhì)的醫(yī)療資源分布極不均衡,。

  以復(fù)雜程度高,、定位診斷難度大的神經(jīng)系統(tǒng)疾病為例,在大量基層醫(yī)院,,臨床的誤診率,、漏診率居高不下,診斷效率水平很低,。

  AI+神經(jīng)影像,,需要加強(qiáng)的是對(duì)醫(yī)學(xué)影像數(shù)據(jù)的內(nèi)容解讀,幫助醫(yī)生進(jìn)一步提高影像診斷精準(zhǔn)度,解決的問(wèn)題是加強(qiáng)醫(yī)生的診斷水平,。

  以此次人機(jī)大戰(zhàn)中腦出血后血腫擴(kuò)大的風(fēng)險(xiǎn)預(yù)測(cè)為例,,李娜作為一名臨床醫(yī)生深知面對(duì)腦出血病人時(shí)的束手無(wú)策,一旦出現(xiàn)血腫擴(kuò)大,,致癱,、致死的幾率會(huì)顯著上升。

  目前,,并沒(méi)有十分有效的治療辦法,。

  在基層醫(yī)院,治療的機(jī)會(huì)便更少了,。

  除非,,能在出血或血腫擴(kuò)大前準(zhǔn)確預(yù)測(cè),在時(shí)間窗內(nèi)給出積極的治療,,比如止血治療,。

  遺憾的是,在臨床上,,仍只有20%~30%的病人能被提早識(shí)別,。

  影像預(yù)測(cè)就像是該疾病治療中無(wú)法挪動(dòng)的絆腳石。

  然而,,經(jīng)過(guò)上千病例的訓(xùn)練,,“BioMind天醫(yī)智”能在影像中看到醫(yī)生肉眼看不到的疾病發(fā)展征象,給出醫(yī)生更精準(zhǔn)的判斷提示,。

  李娜認(rèn)為,,假以時(shí)日,這項(xiàng)技術(shù)可以幫醫(yī)生提升對(duì)腦出血后血腫擴(kuò)大的診斷認(rèn)知,,從而改進(jìn)治療方案,,這對(duì)病人的治療和預(yù)后將起到非常積極的作用。

  為了讓AI跟上醫(yī)生的思路

  目前,,全世界范圍內(nèi),,在AI+醫(yī)學(xué)影像領(lǐng)域,主要業(yè)務(wù)都涉及肺部結(jié)節(jié)和糖尿病性視網(wǎng)膜病變檢測(cè),,因?yàn)檫@些病灶較為方便直觀測(cè)量和診斷,,可以很快幫助醫(yī)生提升影像診斷效率。

  不過(guò),,全世界最復(fù)雜的影像是大腦的影像,,大腦疾病也是非常難攻克的。

  據(jù)王擁軍介紹,,至今還鮮有針對(duì)AI+神經(jīng)影像的研究,。

  北京天壇醫(yī)院“神經(jīng)疾病人工智能研究中心”之所以可以深入這一領(lǐng)域,完全依賴于它獨(dú)一無(wú)二的腦疾病大數(shù)據(jù)積累。

  數(shù)據(jù)是人工智能深度學(xué)習(xí)算法所需的核心資源,。

  天壇醫(yī)院每年接診來(lái)自全國(guó)各地的神經(jīng)系統(tǒng)疑難雜癥患者30萬(wàn)人次,,僅腦部腫瘤年均手術(shù)量就達(dá)到了8000~10000臺(tái)。

  “對(duì)于很多醫(yī)院來(lái)說(shuō),,普遍存在的問(wèn)題是一家醫(yī)院的數(shù)據(jù)不足,,需要多家醫(yī)院數(shù)據(jù)的匯總?!鄙虾=煌ù髮W(xué)生物醫(yī)學(xué)工程學(xué)院教授錢(qián)大宏指出,,“我們目前所關(guān)注的醫(yī)學(xué)大數(shù)據(jù)的共享,需要做的是分布式共享,,來(lái)讓大家合理合法地獲取多中心的數(shù)據(jù),。”

  他表示,,目前數(shù)據(jù)所有權(quán)比較復(fù)雜,,如果將醫(yī)院的數(shù)據(jù)直接拷貝并帶出醫(yī)院進(jìn)行研究并不現(xiàn)實(shí)。

  “歐洲和美國(guó)已有數(shù)據(jù)保護(hù)條例,,比如歐盟《通用數(shù)據(jù)保護(hù)條例》(簡(jiǎn)稱GDPR),。這必將成為一個(gè)趨勢(shì),對(duì)數(shù)據(jù)的保護(hù)會(huì)越來(lái)越強(qiáng),?!?/p>

  另外,吳振洲告訴《中國(guó)科學(xué)報(bào)》記者,,“不像自然圖像識(shí)別,,醫(yī)學(xué)研究領(lǐng)域沒(méi)有足夠的開(kāi)源數(shù)據(jù)支持深度學(xué)習(xí)的算法,一開(kāi)始我們花了很多時(shí)間進(jìn)行數(shù)據(jù)的整理”,。

  醫(yī)療影像數(shù)據(jù)與現(xiàn)實(shí)的物體不一樣,,可以快速直觀地了解數(shù)據(jù)的內(nèi)容,但需要在專(zhuān)業(yè)醫(yī)生指導(dǎo)下才能讀懂,。為了讓AI跟上醫(yī)生的思路,,吳振洲帶領(lǐng)設(shè)計(jì)人員用了三四個(gè)月的時(shí)間學(xué)習(xí)了醫(yī)學(xué)影像書(shū)籍?!拔覀兿纫獙?duì)CT和MRI的影片有初步了解,,才能幫助AI建模?!?/p>

  據(jù)錢(qián)大宏介紹,AI學(xué)習(xí)醫(yī)學(xué)影像的具體方法是深度學(xué)習(xí)結(jié)合先驗(yàn)知識(shí)對(duì)模型進(jìn)行訓(xùn)練,,過(guò)程中需要有經(jīng)驗(yàn)的醫(yī)生將醫(yī)學(xué)圖像進(jìn)行標(biāo)注,,程序員將片子的數(shù)據(jù)注入深度學(xué)習(xí)中,再留些樣本進(jìn)行測(cè)試。

  不同部位的算法不同,,但是基本框架大同小異,。

  他表示,有些不同的學(xué)習(xí)是在數(shù)據(jù)的預(yù)處理階段,,數(shù)據(jù)需要預(yù)處理,,比如分割、配準(zhǔn),、標(biāo)注,。

  預(yù)處理方式如果設(shè)置得好,對(duì)于深度學(xué)習(xí)效果就更好,。

  在這方面,,一般以醫(yī)生的經(jīng)驗(yàn)為主,程序員做出工具,,幫助醫(yī)生做分割和標(biāo)注的工作,。

  “而AI需要學(xué)習(xí)數(shù)據(jù)的數(shù)量則由數(shù)據(jù)預(yù)處理標(biāo)注的好壞決定,如果標(biāo)注清晰,、質(zhì)量高,,那么學(xué)習(xí)以‘千’為單位的影像片數(shù)量就足夠了?!卞X(qián)大宏補(bǔ)充道,。

  高培毅也強(qiáng)調(diào),由于大多數(shù)標(biāo)注依賴人工識(shí)別,,因此數(shù)據(jù)標(biāo)注將耗費(fèi)醫(yī)生很大的人力和時(shí)間,,在醫(yī)療影像領(lǐng)域獲取具有高可靠性的標(biāo)注數(shù)據(jù)是一個(gè)重要挑戰(zhàn)。

  如果數(shù)據(jù)標(biāo)注沒(méi)有足夠的時(shí)間精雕細(xì)琢,,AI所學(xué)習(xí)的知識(shí)就是粗糙的,,甚至可能學(xué)壞。

  吳振洲提到,,不同部位影像對(duì)AI來(lái)說(shuō)學(xué)習(xí)難度也不同,。

  腦部影像數(shù)據(jù)相當(dāng)復(fù)雜,比如MRI影像掃描就包括很多層面和掃描序列,。

  在臨床中,,有些醫(yī)生作出診斷時(shí)并不需要用到所有數(shù)據(jù),比如,,天壇醫(yī)院的醫(yī)生不需要掃描全部序列就足以得出判斷結(jié)論,。

  因此,我們獲取的數(shù)據(jù)序列統(tǒng)一性不好,。

  再者,,難度比較大的是罕見(jiàn)病例的學(xué)習(xí),,由于罕見(jiàn)病例數(shù)量少,最終,,我們采用了遷移學(xué)習(xí)和半監(jiān)督的方法學(xué)習(xí),。

  歸根結(jié)底,AI學(xué)習(xí)必須依賴醫(yī)生的“教導(dǎo)”,,醫(yī)生對(duì)不同疾病的診斷思路和方法不同,,AI的學(xué)習(xí)也要找到最符合該疾病規(guī)律的方法。

  因此,,AI學(xué)習(xí)效率的提升必定是人工智能專(zhuān)家與醫(yī)學(xué)專(zhuān)家深度配合的結(jié)果,。

  目標(biāo)是真正進(jìn)入臨床

  據(jù)悉,目前“BioMind天醫(yī)智”在部分腦瘤的磁共振影像診斷上,,準(zhǔn)確率已達(dá)到90%以上,,相當(dāng)于一個(gè)高級(jí)職稱醫(yī)師級(jí)別的水平;準(zhǔn)確預(yù)測(cè)腦出血和血腫的擴(kuò)大則是達(dá)到了人類(lèi)很難達(dá)到的水平,,但對(duì)它們的訓(xùn)練仍在進(jìn)行中,。

  同時(shí),該AI產(chǎn)品已經(jīng)進(jìn)入國(guó)家藥監(jiān)局(CFDA)驗(yàn)證階段,。

  相比中國(guó),,美國(guó)FDA對(duì)于醫(yī)療人工智能產(chǎn)品的審批走得更快。

  今年,,美國(guó)多款輔助診斷類(lèi)AI產(chǎn)品已經(jīng)通過(guò)審核,。

  王擁軍表示,AI產(chǎn)品的驗(yàn)證必須符合兩個(gè)標(biāo)準(zhǔn):其一,,要達(dá)到大型綜合醫(yī)院副教授以上醫(yī)師的水平,;其二,使用該產(chǎn)品與不使用該產(chǎn)品的基層醫(yī)院,,前者醫(yī)生的業(yè)務(wù)能力須提高20%,。

  “AI產(chǎn)品除了是輔助基層醫(yī)生的工具,更是幫助他們?nèi)绾伍喿x,、診斷,、預(yù)測(cè)片子的學(xué)習(xí)和培訓(xùn)工具。這也意味著,,它不僅解決診斷問(wèn)題,,還應(yīng)該解決基層醫(yī)生培養(yǎng)的問(wèn)題?!?/p>

  最終,,人工智能輔助診斷產(chǎn)品的應(yīng)用能否得到國(guó)家診療指南的推薦,還需要進(jìn)一步的實(shí)踐證據(jù)——除了提升醫(yī)生的工作效率,,AI產(chǎn)品到底能讓患者獲得多大的收益,?

  理論上,,使用該產(chǎn)品應(yīng)該對(duì)神經(jīng)疾病復(fù)發(fā)、死亡,、致殘的下降有所貢獻(xiàn)。

  因此,,天壇醫(yī)院將采用國(guó)際上最新的研究設(shè)計(jì)方法——整群隨機(jī)對(duì)照研究,,將幾十家醫(yī)院分為干預(yù)組和對(duì)照組,驗(yàn)證使用該產(chǎn)品和不使用該產(chǎn)品的患者診療結(jié)果的差異,。

  根據(jù)計(jì)劃,,“BioMind天醫(yī)智”系統(tǒng)還將覆蓋更多頭部疾病的輔助診斷,包括腦腫瘤,、小血管病變,、大血管病變、腦卒中等,,因此,,AI還需拓展更多學(xué)習(xí)的領(lǐng)域。

  此外,,錢(qián)大宏提到,,事實(shí)上,AI目前正學(xué)習(xí)使用多模態(tài)數(shù)據(jù)監(jiān)測(cè),。

  所謂多模態(tài)數(shù)據(jù)監(jiān)測(cè),,就是讓AI能像醫(yī)生一樣,利用各種影像和臨床數(shù)據(jù),,比如生化指標(biāo),、遺傳基因,甚至是疾病史,、生活習(xí)慣,、生活環(huán)境等信息,作出綜合判斷,,輔助更多的醫(yī)療決策,。

  正如王擁軍所期待的,除了醫(yī)學(xué)影像,,人工智能更宏大的目標(biāo)是能真正進(jìn)入臨床,,在患者風(fēng)險(xiǎn)劃分、治療輔助決策,、手術(shù)介入等方面都能發(fā)揮其優(yōu)勢(shì)作用,。


本站內(nèi)容除特別聲明的原創(chuàng)文章之外,轉(zhuǎn)載內(nèi)容只為傳遞更多信息,,并不代表本網(wǎng)站贊同其觀點(diǎn),。轉(zhuǎn)載的所有的文章,、圖片、音/視頻文件等資料的版權(quán)歸版權(quán)所有權(quán)人所有,。本站采用的非本站原創(chuàng)文章及圖片等內(nèi)容無(wú)法一一聯(lián)系確認(rèn)版權(quán)者,。如涉及作品內(nèi)容、版權(quán)和其它問(wèn)題,,請(qǐng)及時(shí)通過(guò)電子郵件或電話通知我們,,以便迅速采取適當(dāng)措施,避免給雙方造成不必要的經(jīng)濟(jì)損失,。聯(lián)系電話:010-82306118,;郵箱:[email protected]