《電子技術(shù)應(yīng)用》
您所在的位置:首頁 > 通信與網(wǎng)絡(luò) > 設(shè)計應(yīng)用 > 基于AMT并聯(lián)混合動力系統(tǒng)的CAN通信設(shè)計
基于AMT并聯(lián)混合動力系統(tǒng)的CAN通信設(shè)計
2015年微型機與應(yīng)用第13期
宋 超,,席力克,羅 銳,,謝勇波,,朱 田,,文健峰,王文明
湖南南車時代電動汽車股份有限公司,,湖南 株洲 412007
摘要: 針對AMT并聯(lián)混合動力系統(tǒng)部件組成與通信性能要求,,提出了一種雙總線CAN拓?fù)浣Y(jié)構(gòu)的實時性通信解決方案。該方案構(gòu)建了基于AMT控制器“路由”轉(zhuǎn)發(fā)的消息系統(tǒng),,設(shè)計了符合TTCAN協(xié)議內(nèi)容的消息時間觸發(fā)機制,,能夠滿足換檔過程整車控制器、AMT控制器,、電機控制器,、發(fā)動機ECU之間數(shù)據(jù)通信的高實時性要求,實現(xiàn)整車控制器與AMT控制器命令的無縫集成,,建立持續(xù)可靠的通信連接,。
Abstract:
Key words :

  摘  要: 針對AMT并聯(lián)混合動力系統(tǒng)部件組成與通信性能要求,提出了一種雙總線CAN拓?fù)浣Y(jié)構(gòu)的實時性通信解決方案,。該方案構(gòu)建了基于AMT控制器“路由”轉(zhuǎn)發(fā)的消息系統(tǒng),,設(shè)計了符合TTCAN協(xié)議內(nèi)容的消息時間觸發(fā)機制,能夠滿足換檔過程整車控制器,、AMT控制器,、電機控制器、發(fā)動機ECU之間數(shù)據(jù)通信的高實時性要求,,實現(xiàn)整車控制器與AMT控制器命令的無縫集成,,建立持續(xù)可靠的通信連接。

  關(guān)鍵詞: AMT并聯(lián)混合動力,;整車控制器,;AMT控制器;TTCAN

0 引言

  隨著能源危機與環(huán)境問題的日益突出,,國家對于新能源汽車產(chǎn)業(yè)的扶持力度逐步加大,,混合動力作為新能源汽車的重要組成部分,吸引了不少企業(yè)與機構(gòu)的加入,。電控機械式自動變速箱(Automated Mechanical Transmission,,AMT)并聯(lián)混合動力以其良好的操作性與相對低廉的價格,從眾多混合動力車型中脫穎而出,,在多個城市得到應(yīng)用,。

  AMT混合動力包含直連式、角傳動等多種結(jié)構(gòu),,直連式系統(tǒng)由于驅(qū)動電機位于變速箱輸入側(cè),,功率配置較大,可直接進行電機低速驅(qū)動,制動回收效果好,,成本控制與經(jīng)濟性效應(yīng)明顯,。

  與傳統(tǒng)AMT車輛相比,直連式混合動力系統(tǒng)更加復(fù)雜,,變速器檔位切換與離合控制過程涉及的部件更多,,需要頻繁地使用整車控制器局域網(wǎng)絡(luò)(Controller Area Network,CAN)進行通信,,數(shù)據(jù)交互量大,,實時性要求高。為確保整車通信安全,、可靠,,選擇較優(yōu)的網(wǎng)絡(luò)結(jié)構(gòu)設(shè)計與交互方式顯得尤為重要。

1 AMT車輛結(jié)構(gòu)

  直連式AMT并聯(lián)混合動力系統(tǒng)傳動鏈同軸耦合,,由發(fā)動機,、電控離合器、驅(qū)動電機,、AMT變速器組成,,支持電機直驅(qū)、發(fā)動機直驅(qū)以及混合驅(qū)動3種工作模式,。系統(tǒng)結(jié)構(gòu)如圖1所示,。

Image 001.png

  低速階段,電機進行直驅(qū),;當(dāng)速度上升或電壓不足時,,離合器結(jié)合,發(fā)動機參與驅(qū)動,。整車控制器負(fù)責(zé)電機/發(fā)動機的動力分配,;AMT控制器負(fù)責(zé)車輛運行過程的檔位切換與離合控制。因此AMT并聯(lián)系統(tǒng)需要構(gòu)建基于整車控制器(Vehicle Control Unit,,VCU)與自動變速箱控制器(Transmission Control Unit,TCU,,即AMT控制器)的混合網(wǎng)絡(luò)控制系統(tǒng),。

2 CAN網(wǎng)絡(luò)設(shè)計

  AMT并聯(lián)混合動力系統(tǒng)是基于CAN總線構(gòu)建的整車網(wǎng)絡(luò)。CAN總線是一種串行多主站控制器局域網(wǎng)總線,,具有很高的網(wǎng)絡(luò)安全性,、通信可靠性和實時性,簡單實用,,網(wǎng)絡(luò)成本低,,特別適用于汽車計算機控制系統(tǒng)和環(huán)境溫度低劣、電磁輻射強和震動大的工業(yè)環(huán)境[1]。

  AMT并聯(lián)混合動力系統(tǒng)中的CAN通信設(shè)備包括整車控制器,、電機控制器,、發(fā)動機ECU(Electronic Control Unit,汽車專用控制器),、AMT控制器,、超級電容或電池管理系統(tǒng)、儀表等,,部分電氣部件如空調(diào),、絕緣檢測裝置等也可能集成CAN通信功能,具體視車輛配置而定,。

  整車CAN網(wǎng)絡(luò)波特率設(shè)定為250 kb/s,,為避免總線負(fù)荷率過高,需要針對不同通信任務(wù)指定不同級別的通信周期,。整車控制器,、電機控制器、AMT控制器的通信任務(wù)影響車輛運行狀態(tài)與駕駛安全,,實時性要求最高,;發(fā)動機ECU消息遵循SAE J1939協(xié)議;儀表主要接收數(shù)據(jù),;超級電容或電池管理系統(tǒng)對儲能系統(tǒng)的運行狀態(tài)進行維護,,實時性要求一般,但消息數(shù)量大,。

  整車CAN網(wǎng)絡(luò)設(shè)計應(yīng)考慮對傳統(tǒng)車輛CAN結(jié)構(gòu)的兼容性,,如發(fā)動機ECU與儀表應(yīng)處于相同的通信子網(wǎng)。

  整車控制器,、AMT控制器既參與電機控制,,也存在與發(fā)動機ECU的交互,為減少路由導(dǎo)致的消息冗余,,要求通信雙方處于相同子網(wǎng),。

  根據(jù)上述原則,AMT并聯(lián)混合動力系統(tǒng)采用CAN雙網(wǎng)絡(luò)拓?fù)浣Y(jié)構(gòu),,包含CANA和CANB 2個子網(wǎng),,如圖2所示。CANA由實時性要求較高的通信設(shè)備構(gòu)成,,包括整車控制器,、電機控制器以及AMT控制器;CANB包含傳統(tǒng)部件如發(fā)動機ECU,、儀表等,,也包括通信實時性要求不高的管理系統(tǒng),。由于整車控制器、AMT控制器存在與發(fā)動機ECU的通信,,因此也連接到CANB子網(wǎng),。

Image 002.png

  對于AMT并聯(lián)控制系統(tǒng),動力性,、經(jīng)濟性與換檔平順性是衡量車輛性能的重要指標(biāo),。整車控制器根據(jù)整車電量、當(dāng)前檔位,、部件狀態(tài)等參數(shù)決定當(dāng)前車輛是工作在純電驅(qū)動模式還是并聯(lián)驅(qū)動模式,,不同模式下的整車需求扭矩由整車控制器根據(jù)司機踏板深度、當(dāng)前檔位速比進行換算,,并最終由電機控制器,、發(fā)動機ECU執(zhí)行。

  純電驅(qū)動模式下,,整車控制器建立與電機的通信連接,,實現(xiàn)車輛加速、制動等駕駛需求,;檔位切換過程中,,AMT控制器對變速箱前后端轉(zhuǎn)速進行調(diào)節(jié),需要短暫剝奪整車控制器對電機控制器的通信能力,,以控制電機轉(zhuǎn)速實現(xiàn)檔位快速切換,。這樣整車控制器到電機控制器,AMT控制器到電機控制器的通信會存在“建立-斷開”的過程,。這種方式可以完成換檔操作,,但是連接狀態(tài)的頻繁改變,會增大通信連接的滯后時間,,增加通信協(xié)議的復(fù)雜程度,,也不利于通信狀態(tài)的檢測。為此,,建立基于AMT控制器“路由”的通信方式,,整車控制器到電機控制器的消息并不直接發(fā)送,而是通過AMT控制器進行地址修改與路由轉(zhuǎn)發(fā),。如圖3所示,。如果當(dāng)前沒有進行換檔,AMT控制器修改消息ID后直接轉(zhuǎn)發(fā)消息內(nèi)容,;如果當(dāng)前正在進行換檔同步,AMT控制器修改電機工作模式為轉(zhuǎn)速控制,,添加目標(biāo)轉(zhuǎn)速等參數(shù)到消息,,然后再進行發(fā)送,。整個過程整車控制器到AMT控制器、AMT控制器到電機控制器的通信連接一直建立,,避免通信狀態(tài)的變化,,提高連接過程的可靠性。

Image 003.png

  并聯(lián)驅(qū)動模式下,,整車控制器建立與發(fā)動機ECU的通信,,確保發(fā)動機工作在油門控制模式,目標(biāo)扭矩通過轉(zhuǎn)換成油門信號發(fā)送給ECU,。換檔過程中,,需要進行離合控制,AMT控制器剝奪整車控制器對ECU的通信能力,,控制發(fā)動機工作在轉(zhuǎn)矩/轉(zhuǎn)速控制模式,,實現(xiàn)離合控制過程的調(diào)扭、轉(zhuǎn)速同步等功能,,因此整車控制器,、AMT控制器與發(fā)動機ECU之間的通信連接也存在“建立-斷開”的過程,同理也需要建立基于AMT控制器“路由”的通信方式,。如圖4所示,,整車控制器到發(fā)動機ECU的消息由AMT控制器進行轉(zhuǎn)發(fā),離合時由AMT修改相關(guān)控制命令與參數(shù),,實現(xiàn)通信連接的無縫切換,。

Image 004.png

3 TTCAN通信協(xié)議設(shè)計

  檔位切換與離合控制過程中,整車CANA網(wǎng)絡(luò)通信實時性要求較高,,AMT并聯(lián)混合動力系統(tǒng)采用基于時間觸發(fā)的TTCAN通信協(xié)議設(shè)計,,可提高網(wǎng)絡(luò)通信效率,降低總線峰值負(fù)荷,,確保數(shù)據(jù)交互安全可靠,。

  TTCAN是建立在原有CAN協(xié)議基礎(chǔ)之上的高層協(xié)議,對網(wǎng)絡(luò)上所有CAN節(jié)點進行通信時序同步,,并提供了全局系統(tǒng)時間,。所有節(jié)點同步以后,任何消息都只能在特定時間段內(nèi)發(fā)送,,不需要與其他消息進行競爭[1],。

  整車CANA網(wǎng)絡(luò)各部件CAN通信芯片不支持TTCAN通信功能,需要制定符合TTCAN標(biāo)準(zhǔn)的通信協(xié)議矩陣,,從軟件層面實現(xiàn)通信消息的時序控制,。

  整車CANA網(wǎng)絡(luò)存在的通信消息如表1所示。

Image 008.png

  整車CANA網(wǎng)絡(luò)采用擴展消息幀格式,,有29位標(biāo)識符,,其數(shù)據(jù)幀由7個不同的位場組成,,包括幀起始、仲裁場,、控制場,、數(shù)據(jù)場、CRC場,、應(yīng)答場和幀結(jié)束,。

  為滿足周期型消息幀的傳遞,采用TTCAN協(xié)議的每個獨立的消息幀需要占用的最小時長w按下式計算[2-3]:

  w=tTX_EN+ti+Cj(1)

  其中,,ti為幀間時間間隔,,取3tbit(tbit為位傳輸時間);tTX_EN為消息幀可觸發(fā)區(qū),,取16tbit,;Cj為消息幀傳輸時間,其計算公式為:

  PKB4TJOEHJYP0J8T94_M$1Y.png

  其中,,dj為消息幀的數(shù)據(jù)場字節(jié)長度,。

  整車CAN網(wǎng)絡(luò)通信速率為250 kb/s,每個消息幀傳遞至少需要0.6 ms,。以TCU_C_1為參考消息幀,,基于1 ms時間段建立TTCAN協(xié)議矩陣,10個時間段構(gòu)成1個循環(huán)周期,,所有消息幀的發(fā)送順序和時間間隔如圖5所示,。

Image 005.png

  對于整車控制器,發(fā)送完參考消息幀后,,啟動時間計數(shù),,當(dāng)計數(shù)周期到達(dá)時間間隔時,發(fā)送對應(yīng)幀,;對于電機控制器和AMT控制器,,接收到整車控制器發(fā)送的參考消息幀后,啟動內(nèi)部定時器進行計數(shù),,當(dāng)計時達(dá)到時間間隔,,發(fā)送對應(yīng)幀。

  由于內(nèi)部時鐘電路的不一致性以及時鐘漂移等影響,,導(dǎo)致整車控制器,、電機控制器與AMT控制器對于時間段長度的“認(rèn)定”存在差別,需要進行時間單元比率的修正,,修正公式如下:

O6A]00(E]}R{RP119PFT)JO.png

  式中,,tref為電機控制器接收到相鄰兩個參考消息幀的時間間隔,tclock為電機控制器按照其時鐘定義計算的單個時間段長度,。AMT控制器時間單元比率計算類似,。

  電機控制器,、AMT控制器需要設(shè)置同步失效時間:

  tsyn=(2~3)tref(4)

  如果電機控制器、AMT控制器超出此時間長度仍未檢測到參考消息幀,,則退出TTCAN協(xié)議;如果后續(xù)接收到有效的參考消息幀,,則自動切換至TTCAN協(xié)議發(fā)送,。電機控制器、AMT控制器的詳細(xì)處理流程如圖6,。

Image 006.png

4 應(yīng)用實例

  基于AMT并聯(lián)混合動力系統(tǒng)進行通信連接與可靠性測試,,采集檔位切換與離合控制過程電機、發(fā)動機轉(zhuǎn)速/扭矩等相關(guān)信息,,繪制如圖7所示曲線,。

Image 007.png

  此時AMT并聯(lián)混合動力客車處于并聯(lián)工作模式。由圖7可知,,檔位切換過程中,,AMT控制器獲得電機控制權(quán)限,電機不再響應(yīng)整車控制器發(fā)送的目標(biāo)扭矩命令,,AMT控制器控制電機降扭,、同步轉(zhuǎn)速;離合控制過程中,,AMT控制器獲得發(fā)動機控制權(quán)限,,發(fā)動機不再響應(yīng)整車控制器油門命令,發(fā)動機ECU工作在轉(zhuǎn)速控制模式,,響應(yīng)AMT控制器發(fā)送的目標(biāo)轉(zhuǎn)速,,實際轉(zhuǎn)速逐步逼近目標(biāo)轉(zhuǎn)速,當(dāng)兩轉(zhuǎn)速差達(dá)到結(jié)合條件,,離合器執(zhí)行結(jié)合動作,,換檔過程全部完成。整個過程電機,、發(fā)動機實現(xiàn)了對整車控制器,、AMT控制器命令切換的無縫響應(yīng)。通過對比CANA實際通信數(shù)據(jù),,發(fā)現(xiàn)各消息幀發(fā)送有序,、時間間隔固定,滿足TTCAN協(xié)議矩陣的設(shè)計內(nèi)容,。

5 結(jié)論

  基于AMT并聯(lián)控制系統(tǒng)的CAN通信設(shè)計采用雙網(wǎng)絡(luò)拓?fù)浣Y(jié)構(gòu),,根據(jù)通信數(shù)據(jù)實時性要求劃分子網(wǎng),在兼容傳統(tǒng)CAN網(wǎng)絡(luò)拓?fù)涞幕A(chǔ)上,,實現(xiàn)電動總成批量數(shù)據(jù)的高速,、可靠傳遞,。

  檔位切換與離合控制過程,針對電機,、發(fā)動機轉(zhuǎn)速/轉(zhuǎn)矩精準(zhǔn)控制與快速響應(yīng)的要求,,建立基于AMT控制器的消息路由機制,確保數(shù)據(jù)直接,、高效傳遞,,通信連接無縫切換。

  針對實時通信子網(wǎng)CANA采用時間觸發(fā)式TTCAN協(xié)議設(shè)計,,制定固定時序的消息發(fā)送策略,,實行連接異常出現(xiàn)后的同步失效控制,確保網(wǎng)絡(luò)通信可靠,、靈活,。

參考文獻

  [1] 羅峰,孫澤昌.汽車CAN總線系統(tǒng)原理設(shè)計與應(yīng)用[M].北京:電子工業(yè)出版社,,2010.

  [2] 林凱,,羅禹貢,李克強.混合動力電動車TTCAN網(wǎng)絡(luò)系統(tǒng)設(shè)計[J].微計算機信息,,2007,,23(32):267-268.

  [3] 孫國良,耿慶波,,李???TTCAN在分布式客房控制系統(tǒng)中的應(yīng)用[J].控制工程,2010,,17(9):49-51.


此內(nèi)容為AET網(wǎng)站原創(chuàng),,未經(jīng)授權(quán)禁止轉(zhuǎn)載。