《電子技術(shù)應(yīng)用》
您所在的位置:首頁 > 模擬設(shè)計 > 設(shè)計應(yīng)用 > 應(yīng)用于音頻放大器的多位Σ-Δ調(diào)制器的設(shè)計
應(yīng)用于音頻放大器的多位Σ-Δ調(diào)制器的設(shè)計
張 沖,,王森章,,王振林
上海交通大學(xué) 微納科學(xué)技術(shù)研究院微米/納米加工技術(shù)國家重點實驗室,薄膜與微細(xì)技術(shù)教育部重點實驗室,,上
摘要: 為在低過采樣率下設(shè)計出高性能的調(diào)制器,,通過采用級間反饋和1位AD/DAC與多位AD/DAC的混合設(shè)計,降低多位DAC非線性化而帶來的噪聲,,進(jìn)一步改善輸出信號的信噪比,。提出了一種應(yīng)用于數(shù)字音頻放大器中的多位Σ-Δ調(diào)制器結(jié)構(gòu)。
Abstract:
Key words :

摘  要: 為在低過采樣率下設(shè)計出高性能的調(diào)制器,,通過采用級間反饋和1位AD/DAC與多位AD/DAC的混合設(shè)計,,降低多位DAC非線性化而帶來的噪聲,進(jìn)一步改善輸出信號的信噪比,。提出了一種應(yīng)用于數(shù)字音頻放大器中的多位Σ-Δ調(diào)制器結(jié)構(gòu),。
關(guān)鍵詞: Σ-Δ調(diào)制器  數(shù)模轉(zhuǎn)換器  信噪比  過采樣率

  隨著電子系統(tǒng)數(shù)字化的不斷深入,,人們對樂音信號回放的要求也越來越高,,因此低失真、高效率的D類放大器已成為研究的熱點,。但目前D類放大器大多是使用模擬脈寬調(diào)制,,如果要放大數(shù)字信號,還需要DAC將數(shù)字信號轉(zhuǎn)換成模擬信號,。實際上,,可以直接對數(shù)字音頻信號進(jìn)行數(shù)字脈寬調(diào)制來實現(xiàn)放大器的數(shù)字化[1],。基于數(shù)字脈寬調(diào)制的數(shù)字音頻放大器的基本結(jié)構(gòu)如圖1所示,。數(shù)字幅值編碼信號(PCM)送入過采樣電路,,經(jīng)過Σ-Δ調(diào)制器進(jìn)行噪聲整形,再經(jīng)過數(shù)字脈寬調(diào)制器調(diào)制成PWM脈寬信號,,然后由PWM脈寬信號去控制功率轉(zhuǎn)換電路中的功率MOS管的開啟和關(guān)閉,,輸出的功率信號經(jīng)過低通平滑濾波器之后,即可重建原來的模擬音頻信號,。Σ-Δ調(diào)制器在數(shù)字音頻放大器中起著關(guān)鍵的作用,。在數(shù)字脈寬調(diào)制對數(shù)字信號進(jìn)行PWM調(diào)制的過程中,由于PCM信號是對信號的幅值進(jìn)行量化,,而數(shù)字PWM調(diào)制是對信號在時域上做量化,,因此必須將時域上的量化和信號幅值相關(guān)聯(lián),即受幅值的調(diào)制,,從而使輸出包含基帶的信息,。一個n位的PCM碼,是通過對一個采樣周期內(nèi)的采樣值經(jīng)過2n級量化編碼得到的,。如果讓轉(zhuǎn)換后的脈寬信號保持信號的精度,,則在一個采樣周期內(nèi)對一個采樣值在時域上也要做2n級量化。而加入了Σ-Δ調(diào)制器后,,它將再次量化輸入的PCM信號,,將輸入的高精度信號量化為低精度信號,而且仍然保持了信號的信噪比指標(biāo),。量化位數(shù)的降低大大降低了數(shù)字脈寬fs·2n(fs為信號采樣率),,如果n減小一半,工作時鐘將成指數(shù)下降,。因此Σ-Δ調(diào)制器的設(shè)計尤為重要,。考慮到后級功率轉(zhuǎn)換器的效率和線性度及系統(tǒng)的功耗,,而且調(diào)制器的過采樣率不會很高[2],,在設(shè)計系統(tǒng)時,將使用多位高階級聯(lián)的Σ-Δ調(diào)制器,,以提高輸入信號的帶寬,。

  一般來說,高階Σ-Δ調(diào)制器比低階Σ-Δ調(diào)制器具有更好的性能,。但大于二階的不能用線性模型描述,,因為比較器的平均增益減小,使系統(tǒng)的穩(wěn)定性下降。多級噪聲模型是解決穩(wěn)定性較好的方案,。該技術(shù)采用了多個級聯(lián),、穩(wěn)定的一階回路,每階回路對上一級的積分器輸出與數(shù)模轉(zhuǎn)換器(DAC)輸出之差(量化噪聲)進(jìn)行量化,,最后差分求和輸出,,它能夠使量化噪聲得到很好的抑制。多位結(jié)構(gòu)的Σ-Δ調(diào)制器則可提高轉(zhuǎn)換速率和精度,。對于一個給定的過采樣比和濾波器的階數(shù),,這種結(jié)構(gòu)可以提供更大的動態(tài)范圍。多位調(diào)制器每增加1位,,信噪比就能增加6dB,,而且它還可以減少帶外的噪聲水平,降低對后級模擬濾波器的要求,。但多位調(diào)制器的一個主要缺點是:由于在多位DAC中的元素不匹配而造成的積分非線性化問題,,使每級的非線性化誤差得不到消除而逐漸累加而造成輸出結(jié)果惡化。本文提出了一種方法:在傳統(tǒng)的MASH結(jié)構(gòu)基礎(chǔ)上,,每級之間加一條反饋回路[3],。該方法能有效地消除多位DAC非線性化而帶來的誤差。
1  調(diào)制器原理
  L階Σ-Δ調(diào)制器如圖2所示,。Σ-Δ調(diào)制器的階數(shù)就是調(diào)制器前向通道積分器的個數(shù),。從圖中可以看出,L階Σ-Δ調(diào)制器的前向通道包括L個積分器和嵌于反饋回路的量化器,,每個積分器的輸入均為前一個積分器的輸出與1位DAC的輸出之差,。反饋回路的作用使得第一級積分器的凈輸入趨于零,即DAC的輸出與調(diào)制器的輸入信號X(n)基本相等,,亦即X(n)≈Y(n),。

  由于量化器為非線性元件,為了分析它所引入的量化誤差,,需將量化器近似等效成一個相加性的白噪聲源e(n),,因此根據(jù)線性化系統(tǒng)疊加原理,得到調(diào)制器對信號和噪聲的傳輸函數(shù)如下:

  從以上公式可以看出,,增加階數(shù),、位數(shù)和過采樣率都可以讓調(diào)制器的信噪比和動態(tài)范圍有不同程度的提高。但隨著它們的提高,,也會帶來負(fù)面影響,。在過采樣率一定的情況下,增加位數(shù)能夠彌補階數(shù)變高而引起的動態(tài)范圍減小的問題,,信噪比也會提高,,但它引入的非線性誤差卻會使結(jié)果惡化。在減小多位系統(tǒng)中的DAC非線性化問題方面,,人們提出了很多解決辦法,,包括引入新的結(jié)構(gòu)、校準(zhǔn)技術(shù),、動態(tài)元素匹配技術(shù)(DEM),、雙端量化結(jié)構(gòu)等[4]。在上述的方法中,,動態(tài)元素匹配技術(shù)在解決多位系統(tǒng)中的非線性化問題中是應(yīng)用最廣的,。它通過計算出不匹配單元造成的誤差,從而得到一個修正算法,,通常用得較多的算法有元素隨機(jī)化和元素旋轉(zhuǎn)等,。但DEM的缺陷是強(qiáng)烈依靠它所使用的算法。例如DEM廣泛使用的DWA數(shù)據(jù)權(quán)重平均算法雖然能夠?qū)Φ谝浑A的噪聲進(jìn)行整形,,但是它也引入了信號依賴誤差而降低了動態(tài)范圍,,雖然改進(jìn)的雙向DWA算法能夠降低信號依賴誤差,但是使帶內(nèi)的噪聲同時也增加了,。因此,,DEM大體上只是用在一階噪聲整形上[5]。為此本文提出了一種沒有采用DEM的4階級聯(lián)調(diào)制器的新方案,,它在解決非線性化的問題上取得了較好的效果,。
2  調(diào)制器結(jié)構(gòu)
  本文中沿用了參考文獻(xiàn)[3]的思想,將它的方案用在如圖3所示的更高階的系統(tǒng)中,。在傳統(tǒng)的2-1-1 MASH級聯(lián)調(diào)制器的基礎(chǔ)上,,除了第一級外,其余的每級上都有一個額外的DAC反饋回路接到上一級的積分器輸出端來使DAC的非線性誤差減小,。傳統(tǒng)2-1-1 MASH Σ-Δ調(diào)制器的輸出如下:

  可以看出最后一級的DAC誤差ed3已經(jīng)被消除掉了,,ed2的整形函數(shù)也比傳統(tǒng)的調(diào)制器提高了一階,只有ed1沒有得到整形,,但它相對于傳統(tǒng)的結(jié)構(gòu)在消除DAC非線性量化誤差方面已經(jīng)有了明顯的提高,。
  每級AD/DA轉(zhuǎn)換器位數(shù)的選取取決于結(jié)果所需要的精度與DAC非線性誤差之和的折衷。顯然每級只有1位的系統(tǒng)可以完全避免非線性化問題,,但是最后的精度可能不夠,;相反,多位系統(tǒng)的精度雖然達(dá)到了,,但必須重新審視非線性化問題,。因此一個比較好的折衷辦法就是使用1位和多位的混合系統(tǒng),系統(tǒng)的第一級為1位,,而其余的為多位,,這樣不僅能夠消除ed1,還可以使ed2足夠低。
  當(dāng)輸入信號很大時,,為了防止過載,,還必須縮放積分器的增益。增益系數(shù)是每級積分器的最大線性化輸出范圍和整個調(diào)制器信噪比的折衷,。設(shè)定每個積分器的增益系數(shù)為a,、b、c,、d,,利用上面的結(jié)論,若在開始的2階調(diào)制器中使用1位AD/DA轉(zhuǎn)換器,,就可消除ed1,。調(diào)制器的輸出為Y=abcd·z-4X+(1-z-1)4E3+d·z-1(1-z-1)3Ed2
3  仿真結(jié)果
  利用MATLAB對本文提出的改進(jìn)結(jié)構(gòu)和傳統(tǒng)的2-1-1結(jié)構(gòu)(MASH結(jié)構(gòu))同時進(jìn)行了行為仿真和比較,。在本文提出的結(jié)構(gòu)中,,選擇積分器的增益系數(shù)分別為:a=1/2、b=2/5,、c=1/2,、d=1,它的第二級和第三級中AD/DA轉(zhuǎn)換器的位數(shù)都為4,,且AD/DA轉(zhuǎn)換器的性能指標(biāo)和MASH結(jié)構(gòu)都一樣,。而在4階MASH結(jié)構(gòu)中,增益系數(shù)分別為:a=1/2,、b=2/5,、c=1、d=1,。為了比較非線性化對2個調(diào)制器的影響,,假定組成單元的最大不匹配值為0.1%,積分器最大非線性化范圍為±0.05LSB,,設(shè)輸入信號頻率為1kHz,,信噪比為-20dB,過采樣率為32,,帶寬為20kHz,,則可得出如圖4和圖5所示的2個調(diào)制器的功率頻譜密度。圖 4表明MASH結(jié)構(gòu)中很小的DAC非線性誤差就很容易造成帶內(nèi)干擾,。而圖5所示的調(diào)制器盡管信噪比的峰值由于增益系數(shù)比較小而比MASH結(jié)構(gòu)小,,但其信噪比比MASH的要高。分析它們的信噪比還可以看出,,由于DAC的非線性誤差,,MASH結(jié)構(gòu)的信噪比下降了18~20dB,,而本文給出的結(jié)構(gòu)只下降了3~4dB。二者之間15dB的差異充分表明了本文給出的結(jié)構(gòu)在消除DAC非線性誤差方面比傳統(tǒng)的2-1-1級聯(lián)調(diào)制器要好得多,。

4  結(jié)  論
  本文分析了Σ-Δ調(diào)制器在數(shù)字音頻中的應(yīng)用,,著重介紹了Σ-Δ調(diào)制器的一個改進(jìn)方案。實驗結(jié)果表明,,本文提出的多位級聯(lián)Σ-Δ調(diào)制器能很好地避免DAC的非線性化問題,多位DAC中最后一級的誤差可以完全消除,,而且它前面一級的誤差也可以得到整形,。仿真結(jié)果表明它的信噪比比傳統(tǒng)的2-1-1級聯(lián)調(diào)制器要好得多。
參考文獻(xiàn)
1   Sandler M.Digital Amplification for Consumer Audio,,Consumer Electronics[R].2000 ICCE.2000 Digest of Technical  Papers.International Conference on,,2000
2   Sherman J D.Class D Amplifiers Provide High Efficiency   for Audio System[N].EDN Magazine,1995
3   Fang L,,Chao K S.A Multi-bit Σ-Δ Modulator with DAC Error Cancellation[R].In:IEEE Proc 1999 International Symposium on Intelligent Signal Processing and Communication Systems,,1999
4   Kinyua M K,Chao K S.High Resolution Multi-bit Sigmadelta Modulator Architecture[J/OL].In:IEEE Proc.40th Midwest Symposium on Circuits and Systems,,1997
5   Baird R,,F(xiàn)iez T.Linearity Enhancement of Multi-bit  Delta-Sigma A/D and D/A Converters using Data Weighted  Averaging[J].IEEE Trans on Circuits Syst sec,1995,;(42)

此內(nèi)容為AET網(wǎng)站原創(chuàng),,未經(jīng)授權(quán)禁止轉(zhuǎn)載。