摘 要: 針對單純的模糊控制器在焊接機(jī)器人的焊縫跟蹤中的控制精度欠佳、自適應(yīng)性不強(qiáng)等問題,,設(shè)計了一種新的用于焊縫跟蹤的LS-SVM非線性內(nèi)??刂?/a>器,。通過樣本數(shù)據(jù)建立系統(tǒng)固定的LS-SVM逆模型,與系統(tǒng)串聯(lián)成精確的偽線性系統(tǒng),,對偽線性系統(tǒng)采用魯棒性強(qiáng)的內(nèi)??刂啤7抡娼Y(jié)果表明該方法具有很好的跟蹤結(jié)果,。
關(guān)鍵詞: 非線性不確定系統(tǒng),;最小二乘支持向量機(jī);逆系統(tǒng)方法,;內(nèi)??刂?/p>
焊接過程中,由于工件的加工誤差,、熱變形,、定位誤差等各種因素的影響,經(jīng)常使焊槍偏離焊縫中心,,導(dǎo)致焊接質(zhì)量下降,。為保證焊接的可靠性,必須實時檢測焊縫的位置,,使焊槍始終對準(zhǔn)焊縫中心,,進(jìn)行焊縫的自動跟蹤。由于焊接是一個非常復(fù)雜的過程,,各種時變,、非線性,、多耦合的影響因素很多,很難甚至不可能建立跟蹤過程的精確數(shù)學(xué)模型,。即使采用經(jīng)典控制理論和現(xiàn)代控制理論方法,,系統(tǒng)的性能也不能令人滿意。
內(nèi)??刂凭哂姓{(diào)節(jié)性能好,、魯棒性強(qiáng)以及能消除不可測干擾的影響等特點,但內(nèi)??刂频姆€(wěn)定性與控制效果取決于模型與被控過程的匹配情況[1-2],。通過樣本數(shù)據(jù)建立系統(tǒng)固定的逆模型,與系統(tǒng)串聯(lián)成精確的偽線性系統(tǒng),,對偽線性系統(tǒng)采用魯棒性強(qiáng)的內(nèi)模控制,,對非線性系統(tǒng)具有較好的控制效果,。
LS-SVM是基于SVM的一種改進(jìn)算法[3-5],它是SVM在二次損失函數(shù)下的一種形式,,用二次損失函數(shù)取代SVM中的不敏感損失函數(shù),,通過構(gòu)造損失函數(shù)將原SVM中算法的二次尋優(yōu)變?yōu)榍蠼饩€性方程,簡化了計算的復(fù)雜性,。
本文將LS-SVM用于系統(tǒng)的逆建模,,提出了一種新的用于水下機(jī)器人焊接焊縫跟蹤的基于LS-SVM非線性內(nèi)模控制算法,,實現(xiàn)了快速響應(yīng)和平滑過渡,。
zF1(z-1),確保內(nèi)??刂破鱃c(z-1)正則,。F(z-1)被選為常矩陣,F(xiàn)(z-1)=1,。
仿真結(jié)果如圖3所示,,基于LS-SVM非線性內(nèi)模控制器對噪聲的抗干擾能力較好,。
由仿真結(jié)果可以看出本文所提出的方法發(fā)生常值攝動和受到常值的強(qiáng)干擾的情況下,,均有很好的跟蹤效果。
針對機(jī)器人焊縫跟蹤系統(tǒng)的典型非線性系統(tǒng),,提出了一種新的控制基于LS-SVM非線性內(nèi)??刂扑惴ā7抡娼Y(jié)果表明,,該方法控制精度高,、速度快,、魯棒性好,控制器能很好地實現(xiàn)焊縫跟蹤,。本文所提方法針對一般的非線性系統(tǒng),,且物理概念清晰,適用面廣,,便于工程應(yīng)用,。
參考文獻(xiàn)
[1] 周涌,陳慶偉,,胡維禮,,內(nèi)模控制研究的新發(fā)展[J].控制理論與應(yīng)用,,2004,,21(3):475-482.
[2] 趙噯.論兩種改進(jìn)內(nèi)模控制系統(tǒng)的等價性[J].控制與決策,,2007,,22(10):1170-1176.
[3] SUYKENS J A K, VANDEWALLE J. Least squares support vector machine classifiers[J]. Neural Processing letters. 1999,,9(3):293-300.
[4] SUYKENS J A K,, VANDEWALLE J. Multiclass least squares support vector machines[C]. IJCNN’99 International Joint Conference on Neural Networks. Washington DC. 1999.
[5] CORTES C, VAPNIK V. Support vector networks[J]. Machine Learning,, 1995,,20:273-297.