《電子技術(shù)應(yīng)用》
您所在的位置:首頁 > 模擬設(shè)計(jì) > 設(shè)計(jì)應(yīng)用 > 通信系統(tǒng)設(shè)計(jì)使用差分信號(hào)的優(yōu)勢(shì)
通信系統(tǒng)設(shè)計(jì)使用差分信號(hào)的優(yōu)勢(shì)
摘要: 通信系統(tǒng)設(shè)計(jì)的主要挑戰(zhàn)之一是如何成功捕獲高保真度信號(hào)。為了避免強(qiáng)干擾效應(yīng),、信號(hào)失真和靈敏度降低,,蜂窩通信系統(tǒng)必須滿足蜂窩標(biāo)準(zhǔn)的嚴(yán)格要求,比如具有高動(dòng)態(tài)范圍,、高輸入線性度和低噪聲的碼分多址(CDMA)和寬帶CDMA(W-CDMA),。
Abstract:
Key words :

通信系統(tǒng)設(shè)計(jì)的主要挑戰(zhàn)之一是如何成功捕獲高保真度信號(hào),。為了避免強(qiáng)干擾效應(yīng),、信號(hào)失真和靈敏度降低,,蜂窩通信系統(tǒng)必須滿足蜂窩標(biāo)準(zhǔn)的嚴(yán)格要求,比如具有高動(dòng)態(tài)范圍,、高輸入線性度和低噪聲的碼分多址(CDMA)和寬帶CDMA(W-CDMA),。

過去,一些實(shí)踐性問題常導(dǎo)致完全差分信號(hào)鏈的性能優(yōu)勢(shì)被單端信號(hào)鏈所掩蓋,,但隨著集成射頻電路技術(shù)和高性能差分射頻構(gòu)建模塊的不斷發(fā)展,,如今差分架構(gòu)已能應(yīng)用于高性能接收機(jī)設(shè)計(jì)中。本文將討論差分信號(hào)鏈在3G和4G無線應(yīng)用中的性能和優(yōu)點(diǎn),。

接收機(jī)信號(hào)鏈

圖1是傳統(tǒng)超外差接收機(jī)的拓?fù)浣Y(jié)構(gòu),,它很好地描述了差分信號(hào)鏈相對(duì)單端信號(hào)鏈的優(yōu)勢(shì)。不管采用什么拓?fù)?,我們的目?biāo)就是將所需信號(hào)成功發(fā)送到ADC端進(jìn)行數(shù)字轉(zhuǎn)化,。信號(hào)路徑由以下幾個(gè)射頻模塊組成:天線、濾波器,、低噪聲放大器(LNA),、混頻器、ADC驅(qū)動(dòng)放大器和ADC,。



圖1:接收機(jī)在不斷發(fā)展,,越來越多的接收機(jī)將使用差分元件。這個(gè)趨勢(shì)開始于ADC,,并將逐漸向信號(hào)鏈上游移動(dòng),。先進(jìn)的集成射頻電路技術(shù)和差分射頻構(gòu)建模塊的擴(kuò)充允許差分架構(gòu)應(yīng)用于高性能接收機(jī)設(shè)計(jì)。

LNA是天線之后的第一個(gè)模塊,,用于放大熱噪聲之上的信號(hào),。這級(jí)電路中的噪聲非常重要,因?yàn)樗鼘Q定系統(tǒng)靈敏度,,而放大可以確保隨后的混頻器和放大器不會(huì)增加顯著的噪聲,。沿信號(hào)路徑往后是帶通濾波器,用于抑制帶外信號(hào),,減少由其它電路級(jí)引起的失真和噪聲。

跟隨LNA之后,,混頻器頻率轉(zhuǎn)換感興趣的信號(hào),,將高頻射頻信號(hào)下變頻至頻率更低、更易于管理的中頻信號(hào)(IF),。ADC驅(qū)動(dòng)放大器和抗混濾波器(AAF)對(duì)將要數(shù)字化的信號(hào)進(jìn)行預(yù)處理,。驅(qū)動(dòng)器提供增益,,AAF抑制第一奈奎斯特區(qū)外的信號(hào),包括將會(huì)發(fā)送給ADC的噪聲和帶外雜散分量,。在模擬信號(hào)路徑末端,,由ADC完成基帶信息的數(shù)字轉(zhuǎn)換。

理想情況下,,只有感興趣的信號(hào)(圖1左邊的藍(lán)色圖形)才會(huì)被傳送到數(shù)字域,。需要使用一個(gè)魯棒系統(tǒng)來處理這個(gè)可能很小的目標(biāo)信號(hào),同時(shí)抑制可能較大的干擾信號(hào),。魯棒系統(tǒng)的設(shè)計(jì),,需要具有高靈敏度、輸入線性,、選擇性和抗噪聲性能,。根據(jù)具體的應(yīng)用和架構(gòu),性能指標(biāo)可能有所變化,,但在大多數(shù)通信系統(tǒng)中,,像失真、本底噪聲和動(dòng)態(tài)范圍等都是通常要考慮的要素,。輸入三階截取點(diǎn)(IP3)和1dB壓縮點(diǎn)(P1dB)必須高,。其它需要考慮的因素還包括低成本、低功耗和小尺寸,。

差分優(yōu)勢(shì)

圖2比較了單端信號(hào)和差分信號(hào)之間的基本區(qū)別,。這里使用了一個(gè)通用增益模塊,但相同的概念可應(yīng)用于信號(hào)鏈中的混頻器和其它器件,。在比較單端和差分信號(hào)時(shí),,要將系統(tǒng)級(jí)性能*估標(biāo)準(zhǔn)牢記在心,以實(shí)現(xiàn)良好的總體接收機(jī)設(shè)計(jì),。



圖2:差分信號(hào)固有的抵消優(yōu)勢(shì)可抵抗噪聲和干擾,,同時(shí)提供偶次諧波的抵消作用。

根據(jù)定義,,單端信號(hào)是一種不平衡信號(hào),,通過感興趣信號(hào)與固定參考點(diǎn)之間的差值來進(jìn)行衡量。這個(gè)參考點(diǎn)通常是地,,用作信號(hào)的返回路徑,。如果有誤差源被引入信號(hào)路徑,就會(huì)產(chǎn)生問題,。因?yàn)榈貐⒖际遣皇茏⑷胝`差的影響,,因此誤差將通過信號(hào)向前傳送。如果不使用極度復(fù)雜的抵消技術(shù),,在單端配置中引入的任何信號(hào)變化都很難消除,。因此,,單端信號(hào)很容易受噪聲和電磁耦合干擾的影響。

另一方面,,差分信號(hào)由成對(duì)的平衡信號(hào)組成,,這些信號(hào)以參考點(diǎn)中心,幅度相同,,相位相反,。正和負(fù)平衡信號(hào)之間的差值對(duì)應(yīng)于復(fù)合差分信號(hào)。如果誤差被引入差分系統(tǒng)路徑,,它將以相同的幅度同時(shí)增加到兩個(gè)平衡信號(hào)上,。因?yàn)榉祷芈窂讲⒉皇且粋€(gè)固定的參考點(diǎn),誤差將在差分信號(hào)中抵消,。因此差分信號(hào)鏈不易受噪聲和干擾的影響,。這種固有的誤差抵消功能還可以提供更好的共模抑制比(CMRR)和電源抑制比(PSSR)。

差分信號(hào)鏈還有一個(gè)單端信號(hào)鏈不具備的優(yōu)勢(shì),,即在相同電源電壓下復(fù)合信號(hào)擺幅可以達(dá)到單端擺幅的兩倍,,從而增加了信噪比。換句話說,,在相同電源電壓下增加了放大器余量,,降低了失真;或者可以用更低的電源電壓提供相同的信號(hào)擺幅,,從而降低功耗,。

圖2顯示了差分系統(tǒng)中固有的偶次諧波抵消。非線性器件,,如本例中的單端和差分放大器,,可以用給定正弦輸入信號(hào)時(shí)的冪級(jí)數(shù)擴(kuò)展傳遞函數(shù)來描述。在單端方案中,,輸出的每個(gè)倍頻分量都有一個(gè)常數(shù),,包括偶次和奇次頻率。在差分模塊中,,偶次非線性在復(fù)合輸出響應(yīng)中被抵消,。雖然實(shí)際器件不能實(shí)現(xiàn)完美的抵消功能,但它們確實(shí)可以因偶次諧波降低而受益,。

圖3顯示了針對(duì)驅(qū)動(dòng)高速8位至16位ADC而優(yōu)化的超低失真,、低噪聲差分放大器的諧波失真情況。圖中顯示了ADC器件被配置為單端和差分拓?fù)鋾r(shí)的二次和三次諧波,。雖然單端模式下的失真非常低,,100MHz時(shí)的HD2值為82dBc,但采用差分操作時(shí)的偶次性能更好,在相同頻率點(diǎn)HD2值低于100dBc,。因此在相同電源軌條件下,采用差分拓?fù)涞恼麄€(gè)信號(hào)鏈的P1dB和IP3有望提高約6dB,。



圖3:雖然單端模式中的失真性能很低,,但差分操作對(duì)偶次性能來說確實(shí)有明顯的好處。在相同電源軌條件下,,差分拓?fù)涞妮敵觯眃B壓縮點(diǎn)和IP3有望提高約6dB,。

差分信號(hào)鏈

隨著接收機(jī)的發(fā)展,差分元器件得到了越來越廣泛的使用,,它們能提供更高的性能等級(jí),。這種演進(jìn)最初始于ADC,并逐漸向信號(hào)鏈上游發(fā)展,。

過去,,信號(hào)應(yīng)用問題和有限的差分射頻構(gòu)建模塊導(dǎo)致人們只選用單端或部分差分信號(hào)鏈。部分差分信號(hào)鏈的一個(gè)例子是省去了差分ADC驅(qū)動(dòng)器,,代之以單端器件和放大器來驅(qū)動(dòng)ADC,。雖然這是一種簡(jiǎn)單的解決方案,但對(duì)性能的不斷追求要求更多的上游電路采用差分拓?fù)?。除了消耗更多的功耗外,,單端?qū)動(dòng)放大器通常具有更差的偶次失真、CMR和PSR,。

如圖1所示,,接收機(jī)常用的架構(gòu)是單端射頻輸入和差分輸出。單端和差分操作之間的分界線似乎在混頻器那兒,,像LNA等射頻元件仍是單端元件,。大多數(shù)SAW濾波器和混頻器內(nèi)核是固有的差分電路,但根據(jù)應(yīng)用目的被轉(zhuǎn)換成了單端方式,。

多年來,,雙平衡混頻器拓?fù)溆捎谄涓呔€性度而廣泛用于蜂窩設(shè)備。遺憾的是,,用于將信號(hào)耦合至混頻內(nèi)核的傳統(tǒng)變壓器網(wǎng)絡(luò)占用了相當(dāng)大的電路板面積,,給設(shè)計(jì)增加了很大的成本。較新的射頻元件,,如ADL535x混頻器系列,,集成了巴倫和變壓器,并提供帶單端射頻輸入和差分中頻輸出的簡(jiǎn)單易用射頻模塊,。



圖4表明所有三個(gè)混頻器端口內(nèi)部全部是差分結(jié)構(gòu),。為了方便作用,射頻和本振端口使用變壓器連接到外部,因此允許單端接口,。相比之下,,中頻輸出端口包含一個(gè)具有200Ω輸出阻抗的驅(qū)動(dòng)放大器,并采用差分方式以方便與差分SAW濾波器連接,。本振和射頻巴倫的集成限制了混頻器的工作頻率,,因此要求使用專門工作在蜂窩頻率范圍的器件系列。

圖4:集成射頻電路技術(shù)的最新發(fā)展允許設(shè)計(jì)師方便地使用具有單端射頻輸入至差分中頻輸出的混頻器,。所有三個(gè)內(nèi)部混頻器端口都可以充分發(fā)揮差分優(yōu)勢(shì),,同時(shí)更方便地與外部世界相連。(作者: Carlos Calvo ADI公司射頻部射頻應(yīng)用工程師)

此內(nèi)容為AET網(wǎng)站原創(chuàng),,未經(jīng)授權(quán)禁止轉(zhuǎn)載,。