張琴
( 廣東技術(shù)師范學(xué)院,,廣東 廣州 510665 )
摘要:設(shè)計(jì)了一款基于瞳孔定位技術(shù)的視覺跟蹤系統(tǒng),。該系統(tǒng)通過(guò)安裝在眼鏡上的攝像頭采集人眼球瞳孔運(yùn)動(dòng)圖像,并利用硬件電路分離視頻同步信號(hào),,然后將信息傳送至S3C6410嵌入式處理器,,處理器利用圖像處理算法計(jì)算出人的瞳孔運(yùn)動(dòng)軌跡,從而得到人眼瞳孔的實(shí)時(shí)定位信息,。該系統(tǒng)具有較為廣泛的應(yīng)用前景,,可以通過(guò)人眼睛的轉(zhuǎn)動(dòng)來(lái)實(shí)現(xiàn)對(duì)各種智能化設(shè)備的控制,能夠應(yīng)用于殘疾人智能護(hù)理,、病床智能護(hù)理等實(shí)際領(lǐng)域,。
關(guān)鍵詞:瞳孔定位;視覺跟蹤,;圖像處理,;嵌入式系統(tǒng)
0引言
視覺跟蹤(Visual Tracking)技術(shù)是計(jì)算機(jī)視覺領(lǐng)域中的一個(gè)重要問(wèn)題。所謂視覺跟蹤,,就是指對(duì)圖像序列中的運(yùn)動(dòng)目標(biāo)進(jìn)行檢測(cè),、提取、識(shí)別和跟蹤,,獲取運(yùn)動(dòng)目標(biāo)的運(yùn)動(dòng)參數(shù)(如位置,、速度、加速度等)以及運(yùn)動(dòng)軌跡,,從而進(jìn)行深入一步的處理與分析,,實(shí)現(xiàn)對(duì)運(yùn)動(dòng)目標(biāo)的行為理解,以完成更高一級(jí)的任務(wù)[1],。由于視覺跟蹤技術(shù)在很多領(lǐng)域有著廣泛的應(yīng)用前景,,視覺跟蹤技術(shù)已經(jīng)成為人工智能領(lǐng)域一項(xiàng)熱門的研究課題。
本文設(shè)計(jì)了一款基于瞳孔定位技術(shù)的視覺跟蹤系統(tǒng),。系統(tǒng)基本結(jié)構(gòu)如下:在一款普通樹脂眼鏡的右上角部位安裝微型攝像頭,,用以采集眼球活動(dòng)數(shù)據(jù),并由數(shù)據(jù)線將圖像傳輸至微處理器,,再由微處理器對(duì)眼球圖像數(shù)據(jù)進(jìn)行算法計(jì)算,,得出眼睛瞳孔的準(zhǔn)確運(yùn)動(dòng)方向。微處理器模塊由于機(jī)械尺寸較大,,暫時(shí)無(wú)法固定在普通樹脂眼鏡之上,,因此目前采用外置方式。
系統(tǒng)原理結(jié)構(gòu)圖如圖1所示。
1系統(tǒng)各功能模塊
1.1微型攝像頭模塊
攝像頭是采集人眼球活動(dòng)數(shù)據(jù)的基本設(shè)備,,它的采集精度和準(zhǔn)確性對(duì)系統(tǒng)的質(zhì)量有著關(guān)鍵的影響,。經(jīng)過(guò)綜合考慮,本系統(tǒng)選擇了OV7960攝像頭模塊,,該模塊尺寸較小,,最大尺寸只有9 mm,具有480TVL的水平清晰度,,可以滿足眼球瞳孔定位追蹤的精度要求,。
1.2視頻同步分離模塊
為了能夠?qū)Σ杉降囊曨l信號(hào)進(jìn)行數(shù)字化處理,必須首先對(duì)采集到的彩色視頻信號(hào)進(jìn)行視頻同步分離,,以獲取視頻中的彩色圖像數(shù)據(jù),,這就需要視頻同步分離電路來(lái)完成。為了減少處理器的負(fù)荷,,本文采用硬件方法對(duì)視頻信號(hào)進(jìn)行同步分離,,電路采用專用的視頻分離芯片LM1881N完成分離功能,,其電路如圖2所示,。
1.3微處理器模塊
本系統(tǒng)采用S3C6410嵌入式芯片作為微處理器。S3C6410 采用ARM1176JZFS 的內(nèi)核,,主頻可以達(dá)到533 MHz/667 MHz ,,最大支持到8 bit 糾錯(cuò), 實(shí)現(xiàn)了MMU,、AMBA BUS 和Harvard 高速緩沖體系結(jié)構(gòu)[2],。
2瞳孔追蹤原理及算法
系統(tǒng)通過(guò)跟蹤人瞳孔實(shí)時(shí)運(yùn)動(dòng)軌跡來(lái)實(shí)現(xiàn)視覺跟蹤的目的,需要較為復(fù)雜的圖像處理算法完成瞳孔識(shí)別與追蹤的工作,。其中第一步是實(shí)現(xiàn)對(duì)視頻圖像信息的采集任務(wù),,這可以在S3C6410處理器上運(yùn)行圖像采集程序?qū)崿F(xiàn)。圖3圖像處理算法流程圖
在一般情況下,,系統(tǒng)采集到的眼部圖像存在著背景光線干擾,、光線反射變化、眼部運(yùn)動(dòng)變化等多種復(fù)雜的環(huán)境影響,,因此圖像的質(zhì)量并不高,,難以獲得精確的瞳孔運(yùn)動(dòng)數(shù)據(jù)。因此必須通過(guò)專業(yè)的圖像處理算法才可以提取到清晰的眼部瞳孔圖像,, 系統(tǒng)采用的圖像處理算法流程圖如圖3所示,。
2.1圖像的灰度化處理
為加強(qiáng)圖像目標(biāo)區(qū)域的對(duì)比度,本文采用了一種有選擇性的灰度化方法[3],,該方法將常規(guī)的R,、G、B數(shù)值映射到新的坐標(biāo)空間Rn、Gn,、Bn,。以Rn為例,其計(jì)算過(guò)程由式(1),、式(2)確定,。
當(dāng)Rs≥128時(shí),Rn的數(shù)值由式(1)給出:
按照以上方法得到的灰度圖像可以產(chǎn)生比傳統(tǒng)方法更好的灰度化效果,,使瞳孔部分的灰度效果在背景圖像中表現(xiàn)得更加突出,。
2.2圖像的濾波處理
本系統(tǒng)選擇了模糊矢量濾波算法。當(dāng)采集到的圖像存在一定的噪聲干擾的情況下,,濾波器難以區(qū)分目標(biāo)圖形的邊緣與噪聲圖像之間的界線,,使得目標(biāo)圖像識(shí)別率降低,而模糊濾波理論可以解決以上問(wèn)題[4],。圖像模糊濾波算法的核心是構(gòu)造一個(gè)模糊加權(quán)均值濾波器,,其計(jì)算過(guò)程由式(3)確定[5]:
其中,wk是對(duì)應(yīng)于圖像像素點(diǎn)x(l)k的歸一化權(quán)值,,它的數(shù)值由下列條件限定:
而圖像像素點(diǎn)的歸一化權(quán)值wk數(shù)學(xué)形式由式(5)定義:
2.3圖像的閾值分割
運(yùn)用圖像閾值分割技術(shù)可以從已經(jīng)濾波的圖像中提取所需的跟蹤目標(biāo)信息,,常用的圖像閾值分割方法有最大類間方差法和最大熵法等[6]。本文選擇最大熵法進(jìn)行閾值分割,。最大熵法的最佳閾值由式(6)確定[7]:
T*=argMax[Hf(t)+Hb(t)](6)
2.4軌跡特征提取
系統(tǒng)采用選擇最小二乘法來(lái)實(shí)現(xiàn)瞳孔運(yùn)動(dòng)軌跡的直線擬合,。最小二乘法的原理非常簡(jiǎn)單,可以用式(7)來(lái)實(shí)時(shí)地描述每一條運(yùn)動(dòng)軌跡:
Y=kx+b(7)
其中,,k表示直線的斜率,,b表示直線的截距。只要求解出k和b的數(shù)值,,就可以得到圖像的運(yùn)動(dòng)軌跡,,而根據(jù)最小二乘法原理,k,、b的值由式(8),、式(9)確定[8]:
按上述方法,可以把瞳孔的運(yùn)動(dòng)軌跡擬合成若干段直線的組合形式,,既能夠減小處理器的計(jì)算量,,同時(shí)也不影響對(duì)瞳孔運(yùn)動(dòng)方向的判斷,符合系統(tǒng)對(duì)運(yùn)動(dòng)軌跡判決精度的要求,。
3實(shí)驗(yàn)及性能分析
使用該系統(tǒng),,對(duì)人雙眼的瞳孔運(yùn)動(dòng)軌跡進(jìn)行了多次的跟蹤實(shí)驗(yàn)與判斷。實(shí)驗(yàn)過(guò)程如下:系統(tǒng)在進(jìn)行視覺追蹤時(shí),,由算法自動(dòng)設(shè)定眼球正中位置為初始位置,,當(dāng)人的眼球轉(zhuǎn)動(dòng)時(shí),,瞳孔的相對(duì)位置及運(yùn)動(dòng)軌跡發(fā)生改變,通過(guò)跟蹤瞳孔的運(yùn)動(dòng)軌跡,,系統(tǒng)可以判斷出瞳孔的相對(duì)位置,,并給出判斷后的二進(jìn)制數(shù)值。瞳孔的位置真值表如圖4所示,?! ?/p>
對(duì)系統(tǒng)進(jìn)行了多次實(shí)驗(yàn)及測(cè)試,得到的實(shí)測(cè)數(shù)據(jù)如表1,、表2所示,。
由表1、表2數(shù)據(jù)可知,,系統(tǒng)對(duì)人眼瞳孔軌跡追蹤的實(shí)時(shí)響應(yīng)時(shí)間較快,,左眼平均響應(yīng)時(shí)間為23 ms,右眼平均響應(yīng)時(shí)間為23.5 ms,,數(shù)據(jù)接近,,可以滿足一般情況下對(duì)系統(tǒng)實(shí)時(shí)性的要求。在測(cè)試中發(fā)現(xiàn),,系統(tǒng)對(duì)于瞳孔水平方向運(yùn)動(dòng)軌跡的跟蹤準(zhǔn)確度較高,,正確率達(dá)到93.13%,而對(duì)垂直方向的瞳孔運(yùn)動(dòng)追蹤準(zhǔn)確度稍低,,正確率為86%,。分析原因,,這是因?yàn)槿梭w的眼球圖像近似于一個(gè)水平放置的橢圓,,左右方向的軸距較長(zhǎng),上下方向的軸距較短,,所以在進(jìn)行軌跡追蹤時(shí),,垂直方向的瞳孔運(yùn)動(dòng)軌跡距離較短,采集到的像素點(diǎn)較少,,因此系統(tǒng)容易造成誤判,;而水平方向的運(yùn)動(dòng)軌跡較長(zhǎng),采樣到的數(shù)據(jù)點(diǎn)較多,,系統(tǒng)擬合出的直線軌跡較為精確,,因此判決正確率較高。
4結(jié)論
在一般應(yīng)用條件下,,本文所提出的系統(tǒng)已經(jīng)可以滿足視覺跟蹤技術(shù)對(duì)于實(shí)時(shí)性和準(zhǔn)確度的要求,,但在更高要求的場(chǎng)合應(yīng)用時(shí),系統(tǒng)的性能還需要進(jìn)一步提高,,這可以通過(guò)采用更高性能的硬件處理器以及設(shè)計(jì)更高效的軟件算法來(lái)實(shí)現(xiàn),,這些工作可以在下一步的研究中繼續(xù)優(yōu)化與改進(jìn),。
參考文獻(xiàn)
[1] BABU R V, PEREZ P,, BOUTHEMY P. Robust tracking with motion estimation and local kernelbased color modeling[J]. Image and Vision Computing, 2007(25):12051216.
?。?] 徐媛媛,匡斐,鐘璐遠(yuǎn),等.基于ARM11平臺(tái)和GPRS遠(yuǎn)程無(wú)線圖像報(bào)警系統(tǒng)的研究[J].微型機(jī)與應(yīng)用,2015,34(2):3840.
?。?] 周金和,,彭福堂.一種有選擇的圖像灰度化方法[J].計(jì)算機(jī)工程,2006,32(10):198200.
?。?] SHEN Y,, BARNER K E. Fast adaptive optimization of weighted vector median filters[J].IEEE Transactions on Signal Processing, 2006, 54(7): 24972510.
[5] LUKAC R, PLATANIOTIS K N, VENETSANOPOULOS A N, et al. A statisticallyswitched adaptive vector median filter[J]. Journal of Intelligent and Robotic Systems: Theory and Applications,2005, 42(4): 361391.
?。?] Qi Zhengwei, You Jinyuan. Formalization of P systems by Maude [J] . Journal of Shanghai Jiaotong University (Science), 2005, 10(3):260264.
?。?] MORILLAS S, GREGORI V, PERISFAJARNES G, et al. A fast impulsive noise color image filter using fuzzy metrics[J]. RealTime Imaging, 2005, 11(56): 417428.
[8] GHEORGHE P. P systems with active membranes: attacking NP complete problems[J] . Journal of Automata Languages and Combinatorics, 2001(6): 7590.