基于在線軟件工具的數(shù)字電源UCD92xx反饋環(huán)路調(diào)試指南
2013-07-16
作者:Neil Li, Sundy Xu
來源:China Telecom Application Team
摘要
基于UCD92xx 的非隔離數(shù)字電源系統(tǒng)由控制芯片和功率級(jí)芯片構(gòu)成,。功率級(jí)芯片由Mosfet 驅(qū)動(dòng)和功率Mosfet組成,,包括獨(dú)立的Mosfet 驅(qū)動(dòng)(如UCD7232),,或者集成Mosfet 的功率級(jí)芯片(如UCD7242 和UCD74120等),。通過與UCD92xx 配套使用的在線工具Fusion Digital Power Designer 可以在線調(diào)節(jié)反饋環(huán)路,,提高環(huán)路調(diào)節(jié)的效率。本文在一款基于UCD9224 和UCD74120 的數(shù)字電源板上演示如何在線調(diào)節(jié)環(huán)路,。
1,、引言
設(shè)計(jì)一款基于UCD92xx 的非隔離數(shù)字電源,需要首先選擇合適的控制芯片和功率級(jí)芯片,。當(dāng)功率級(jí)芯片選用UCD74120 時(shí),,因其內(nèi)部集成了驅(qū)動(dòng)器和BUCK 上下管,外圍只需增加電感和輸出電容即可,。然后可以使用在線軟件工具對(duì)整個(gè)電源系統(tǒng)進(jìn)行配置和調(diào)節(jié),。
1.1 數(shù)字電源控制器UCD92xx
UCD92xx 是內(nèi)部集成ARM7 核的非隔離數(shù)字電源控制器,可以靈活的配置為多路或多相模式,,以UCD9224 為例,,可以配置其為雙路輸出或單路四相并聯(lián)輸出等。 圖1 是UCD9224 的內(nèi)部框圖,,關(guān)鍵模塊包括:
● Fusion Power Peripheral:包含輸出電壓誤差的采集,,環(huán)路補(bǔ)償及DPWM 的輸出等;
● ADC 采樣模塊:包含10 個(gè)ADC 接口,,用來對(duì)外部信息(如溫度,,電流)和內(nèi)部信息(溫度)進(jìn)行采集;
● Analog Comparators 模塊:包含三個(gè)模擬比較器,,用來完成對(duì)過流等故障的快速保護(hù),;
● ARM-7 模塊:包含ARM-7 核,F(xiàn)lash 和晶振等,;
● PMBUS 模塊:通訊接口,,用來與上位機(jī)進(jìn)行通信;
● 其它:包括SRE 控制等模塊,,用來控制BUCK 運(yùn)行于同步整流還是非同步整流模式,;
圖1:UCD9224 內(nèi)部框圖 圖2:UCD74120 內(nèi)部框圖
1.2 功率級(jí)芯片UCD74120
UCD74120 是一款集成了驅(qū)動(dòng)器和BUCK 上下管的功率級(jí)芯片,最大輸出電流為25A,,內(nèi)部框圖如圖2,。該芯片同時(shí)具有電流檢測(cè)及上報(bào)(給UCD92xx)功能,過流保護(hù)(輸出電流的過流保護(hù)和BUCK 上管過流保護(hù)),,欠壓保護(hù),,過溫保護(hù)及故障上報(bào)功能(通過FLT 管腳)等。
1.3 在線調(diào)試軟件Fusion Digital Power Designer
TI 提供與UCD92xx 配套的在線工具集:Fusion Digital Power Designer,,包括offline 模式和online 模式,。Offline模式用來離線配置,而online 模式可以在線對(duì)UCD92xx 配置和監(jiān)控。本文涉及的在線環(huán)路調(diào)節(jié)是使用online 模式軟件,。圖3,,4,5,,6 顯示的即為該軟件工具的四個(gè)主要功能模塊,。
● 配置:如圖3,實(shí)現(xiàn)對(duì)輸出電壓幅值及過壓點(diǎn)/欠壓點(diǎn),,上電/下電斜率,,輸出過流點(diǎn)等的配置;
● 設(shè)計(jì):如圖4,,由客戶選定主要功率器件及外圍元件參數(shù),,再由Fusion Digital Power Designer 實(shí)現(xiàn)對(duì)數(shù)字電源環(huán)路的配置及模擬仿真;
● 監(jiān)控:如圖5,,在線對(duì)輸出電流/電壓,,輸入電壓等的實(shí)時(shí)監(jiān)控;
● 狀態(tài):如圖6,,記錄數(shù)字電源的各種故障,,如過壓,過流,,欠壓等,,便于故障定位。
1.4 演示環(huán)路調(diào)試的數(shù)字電源板
本文在一款基于UCD9224 和UCD74120 的數(shù)字電源單板上實(shí)際演示環(huán)路的調(diào)試,,包括對(duì)應(yīng)的實(shí)測(cè)波形,。該電源的系統(tǒng)框圖如圖7 所示,包含了四個(gè)功率級(jí),,采用交錯(cuò)并聯(lián)模式輸出,。系統(tǒng)的規(guī)格為:輸入電壓12V,輸出電壓1.0V,,最大輸出電流為80A,。
圖7:數(shù)字電源系統(tǒng)框圖
2、環(huán)路在線調(diào)試細(xì)則
借助于Fusion Digital Power Designer-online 在線工具可以完成環(huán)路的配置及仿真,,然后根據(jù)實(shí)測(cè)結(jié)果再微調(diào),,最終可以得到一個(gè)理想的環(huán)路配置,整個(gè)過程中無需調(diào)試硬件,。
2.1 錄入功率級(jí)參數(shù)
在圖3 的設(shè)計(jì)界面中有“Edit Full Power Stage in Schematic”按鈕,,點(diǎn)擊后彈出界面8。在該窗口中,,用戶需要輸入實(shí)際使用的硬件參數(shù)值,,包括電感(及DCR),電容,,反饋電阻等,。
上述輸入的這些參數(shù)用來完成整個(gè)閉環(huán)環(huán)路的模擬與仿真。因此,,當(dāng)錄入的參數(shù)越是與實(shí)際參數(shù)一致,,則仿真得到的環(huán)路參數(shù)也越是與實(shí)際相符。
錄入完畢后即可保存退出,。
圖8:錄入功率級(jí)參數(shù)
2.2 使用Auto Tune 功能
錄入?yún)?shù)完畢后,,就可以開始進(jìn)行環(huán)路的補(bǔ)償及配置。首先可以使用Auto Tune 功能,,這也是最為簡(jiǎn)單的環(huán)路配置方式,。即,點(diǎn)擊“Compensation Mode”中的“Auto Tune”,,此時(shí)圖9 中的中間上部區(qū)域會(huì)顯示配置后的環(huán)路參數(shù):截止頻率19.05kHz,,相位余量64.32°,增益余量15.16dB,。該功能使用客戶所輸入的硬件參數(shù),,以及對(duì)相位增益的要求,來自動(dòng)配置環(huán)路補(bǔ)償,。使用該功能后,,F(xiàn)usion Digital Power Designer 會(huì)進(jìn)行自動(dòng)配置環(huán)路補(bǔ)償,客戶無法更改環(huán)路配置,。
圖9 右側(cè)區(qū)域是基于當(dāng)前配置的環(huán)路參數(shù)模擬動(dòng)態(tài)后得到的結(jié)果,。其中動(dòng)態(tài)條件是可以自行輸入的,最終的動(dòng)態(tài)紋波峰峰值在右側(cè)的上部區(qū)域有顯示,。
如果對(duì)這個(gè)環(huán)路參數(shù)及模擬得到的動(dòng)態(tài)紋波峰峰值比較滿意,,可以保留當(dāng)前參數(shù)。環(huán)路調(diào)節(jié)完畢,。
圖9:Auto Tune 功能
2.3 手工優(yōu)化參數(shù)配置
假如使用Auto Tune 得到的參數(shù)不理想或者想進(jìn)一步優(yōu)化,,可以點(diǎn)擊“Compensation Mode”中的“Manual”,然后通過調(diào)節(jié)Linear Compensation 和Non-linear Compensation 得到一個(gè)更為理想的環(huán)路配置,。
1. Linear Compensation 的調(diào)試方法
如圖10,,顯示的是某次環(huán)路配置結(jié)果,沒有使能Non-linear 功能,??梢杂^察到,其截止頻率為1.27K,。此時(shí)測(cè)試到的動(dòng)態(tài)波形(測(cè)試條件為:20A~40A~20A,,斜率為2.5A/us)的峰峰值為159mV,超出了所要求的100mV指標(biāo)。
還可以觀察到動(dòng)態(tài)波形的恢復(fù)時(shí)間也超出了要求的范圍,,這是因?yàn)檫^大的動(dòng)態(tài)紋波峰峰值導(dǎo)致了EADC 輸出飽和,,其輸出值被鉗制在一個(gè)固定值(該值與AFE 的Gain 有關(guān)系),因此環(huán)路補(bǔ)償電路只能根據(jù)該飽和值(小于實(shí)際輸出值)進(jìn)行補(bǔ)償,,由此帶來了較長(zhǎng)的恢復(fù)時(shí)間,。超長(zhǎng)的恢復(fù)時(shí)間的根因是動(dòng)態(tài)紋波峰峰值過大。
圖10:帶寬過低造成動(dòng)態(tài)響應(yīng)差
下面將對(duì)上述不太理想的環(huán)路進(jìn)行優(yōu)化,,措施包括調(diào)整低頻增益,,第一零點(diǎn),第二零點(diǎn)和第二極點(diǎn),。
在進(jìn)行手動(dòng)調(diào)節(jié)前,,需要選定調(diào)節(jié)方式。目前有三種方式可選:1)Real Zeros 模式,;2)Complex Zeros 模式,;3)PID 模式。其中Real Zeros 模式最為貼近常規(guī)模擬電源的環(huán)路調(diào)節(jié)方式,,下文主要針對(duì)此種方式闡述,。
1)調(diào)整低頻增益
觀察圖10 中的波特圖,功率支路的雙極點(diǎn)位于約6KHz 處,,環(huán)路的兩個(gè)零點(diǎn)分別是4KHz(Fz1)和13.94KHz(Fz2),,但是兩個(gè)零點(diǎn)的位置都在截止頻率的右側(cè),因此零點(diǎn)對(duì)截止頻率的貢獻(xiàn)較小,,可以嘗試增大低頻增益,。
K 表示低頻增益。將K 值由原來的61.1dB 修改為72dB 后,,截止頻率變?yōu)?0.41KHz,,有了明顯的改善,且位于兩個(gè)零點(diǎn)之間,。增益余量和相位余量亦滿足環(huán)路穩(wěn)定準(zhǔn)則的要求,。
圖11:調(diào)整低頻增益的實(shí)際效果
2)調(diào)整第一零點(diǎn)和第二零點(diǎn)
第一零點(diǎn)為4KHz,位于雙極點(diǎn)的左側(cè),。即,,環(huán)路增益受到到第一零點(diǎn)的影響而增強(qiáng)后,隨后會(huì)受到雙極點(diǎn)的影響而衰弱,。因此,,此時(shí)右移第一零點(diǎn),將會(huì)減小截止頻率,,相位余量也會(huì)被減??;反之,截止頻率和相位余量會(huì)繼續(xù)變大,。例如,,當(dāng)將第一零點(diǎn)修改為5Khz 后,截止頻率減小到9.29KHz,,相位余量減小為89.2°,。
圖12:調(diào)整第一零點(diǎn)的實(shí)際效果
第二零點(diǎn)為14KHz,,位于雙極點(diǎn)的右側(cè),,接近截止頻率。因此,,當(dāng)左移該零點(diǎn),,原截止頻率處的環(huán)路增益得到增強(qiáng),截止頻率會(huì)變大,。第二零點(diǎn)處的相位會(huì)被提升,,當(dāng)截止頻率變大而接近第二零點(diǎn)后,相位余量也會(huì)因此變大,。例如,,當(dāng)將第二零點(diǎn)修改為11KHz 后,截止頻率變大到9.87KHz,,相位余量增大到94.68°,。
圖13:調(diào)整第二零點(diǎn)的實(shí)際效果
3)調(diào)整第二極點(diǎn)
觀察圖13 中的波特圖,增益余量對(duì)應(yīng)的頻率為200KHz,,而第一極點(diǎn)的位置是119.9KHz,。因此,如果想進(jìn)一步增大增益余量,,可以左移第一極點(diǎn),。此時(shí),增益達(dá)到200KHz 區(qū)域后會(huì)下降的更多,,增益余量得以增大,。
圖14:調(diào)整第二極點(diǎn)的實(shí)際效果
至此,低頻增益,,零點(diǎn)和極點(diǎn)都有所調(diào)整,。使用當(dāng)前環(huán)路參數(shù)測(cè)試到的動(dòng)態(tài)波形見圖15,可以觀察到,,動(dòng)態(tài)紋波的峰峰降低為90mV,,已經(jīng)滿足指標(biāo)要求。
圖15:線性補(bǔ)償調(diào)節(jié)及其實(shí)測(cè)波形
2,、Non-linear Compensation 的使用
非線性補(bǔ)償?shù)脑硎窃诃h(huán)路補(bǔ)償環(huán)節(jié)加入非線性控制,,對(duì)大信號(hào)響應(yīng)做進(jìn)一步的控制,。即,當(dāng)輸入到環(huán)路的誤差量超出一定范圍后使用更大的增益值,,可以有效降低動(dòng)態(tài)波形的峰峰值,,且不影響常態(tài)運(yùn)行時(shí)的環(huán)路標(biāo)。
以圖16 為例,,當(dāng)誤差量在Limit1 和Limit2 之間時(shí),,環(huán)路增益值為1.25;當(dāng)超過Limit1/2 但為超出Limit0/3時(shí),,增益值為1.75,;當(dāng)超出Limit0/3 后,增益值為2.25,。同時(shí),,可以觀察到,使能非線性補(bǔ)償后環(huán)路的截止頻率,,增益余量和相位余量與未使用非線性補(bǔ)償前是一致的,。
上文提到的Limitx 中的數(shù)值針對(duì)的是EADC 的輸出(為無單位的純數(shù)值)。EADC 將參考電壓和輸出電壓之間的差值(Vref-Vout)轉(zhuǎn)化為數(shù)字化信號(hào),。因此,,超出Limit2/3 的數(shù)值表示輸出電壓低于參考電壓,也即對(duì)應(yīng)于輸出電流上跳的動(dòng)態(tài)響應(yīng),。而低于Limit1/0 的數(shù)值表示輸出電壓高于參考電壓,,也即對(duì)應(yīng)于輸出電流下跳的動(dòng)態(tài)響應(yīng)。最終,,動(dòng)態(tài)紋波的峰峰值降低到了74mV,,較未使用非線性補(bǔ)償變小了了約20%。
圖16:非線性增益調(diào)節(jié)及實(shí)測(cè)波形
2.4 環(huán)路參數(shù)調(diào)試完畢的保存及生效
環(huán)路參數(shù)確定后,,點(diǎn)擊“Write to Hardware”按鈕可以保存當(dāng)前參數(shù),。此時(shí),會(huì)彈出一個(gè)新的窗口,,顯示用戶剛剛編輯的數(shù)據(jù)(Original)和實(shí)際寫入到芯片的數(shù)據(jù)(New),。二者存在的輕微差異主要是由于模擬到數(shù)字轉(zhuǎn)化的量化誤差導(dǎo)致的。
圖17:保存數(shù)據(jù)并生效
雖然將“New”所對(duì)應(yīng)的數(shù)據(jù)寫入到了芯片中,。但需要注意的是,,此時(shí)UCD9224 實(shí)際使用的環(huán)路參數(shù)并不是上述數(shù)據(jù)。當(dāng)只有當(dāng)點(diǎn)擊“Activate CLA Bank”按鈕后才會(huì)使UCD9224 使用“New”所對(duì)應(yīng)的數(shù)據(jù),。
3,、軟啟動(dòng)階段對(duì)應(yīng)的環(huán)路調(diào)試
UCD92xx 的環(huán)路補(bǔ)償電路對(duì)應(yīng)有2 套參數(shù),分別在輸出電壓軟啟動(dòng)階段和輸出電壓正常運(yùn)行時(shí)使用,,給應(yīng)用帶來了極大的靈活性,。通常,,軟啟動(dòng)階段的環(huán)路響應(yīng)可以略慢于正常運(yùn)行時(shí)的環(huán)路響應(yīng),防止在起機(jī)過程中出現(xiàn)過沖等問題,。
圖18 是軟啟動(dòng)階段的環(huán)路配置,,與正常運(yùn)行時(shí)的環(huán)路配置相似。需要注意的有如下幾點(diǎn):
1. 盡量保證零極點(diǎn)的位置與正常運(yùn)行時(shí)環(huán)路的零極點(diǎn)一致,;
2. 可以通過將AFE 的Gain 修改為2X 或?qū)on-linear 的中間Gain 改為0.75 來降低環(huán)路帶寬,;
圖18:軟啟動(dòng)階段環(huán)路調(diào)節(jié)
4 參考文獻(xiàn)
1. UCD9224 datasheet, Texas Instruments Inc., 2010
2. UCD74120 datasheet, Texas Instruments Inc., 2011
3. Using the UCD92xx Digital Point-of-Load Controller Design Guide, Texas Instruments Inc., 2011
4. Application Note:數(shù)字電源UCD92xx 輸出電壓波形的優(yōu)化
5. Application Note:數(shù)字電源控制器UCD3138 的數(shù)字比較器與模數(shù)轉(zhuǎn)換器的應(yīng)用說明