《電子技術(shù)應(yīng)用》
您所在的位置:首頁(yè) > 電源技術(shù) > 設(shè)計(jì)應(yīng)用 > PI工程師教你電源設(shè)計(jì)技巧
PI工程師教你電源設(shè)計(jì)技巧
摘要: 對(duì)于兩個(gè)輸出端都提供實(shí)際功率(5V 2A和12V 3A,兩者都可實(shí)現(xiàn)± 5%調(diào)節(jié))的雙路輸出反激式電源來(lái)說(shuō),,當(dāng)電壓達(dá)到12V時(shí)會(huì)進(jìn)入零負(fù)載狀態(tài),,而無(wú)法在5%限度內(nèi)進(jìn)行調(diào)節(jié),。線性穩(wěn)壓器是一個(gè)可實(shí)行的解決方案,,但由于價(jià)格昂貴且會(huì)降低效率,仍不是理想的解決方案,。我們建議的解決方案是在12V輸出端使用一個(gè)磁放大器,,即便是反激式拓?fù)浣Y(jié)構(gòu)也可使用。
Abstract:
Key words :

文章1. 反激電源中的鐵氧體磁放大器

對(duì)于兩個(gè)輸出端都提供實(shí)際功率(5V 2A和12V 3A,,兩者都可實(shí)現(xiàn)± 5%調(diào)節(jié))的雙路輸出反激式電源來(lái)說(shuō),,當(dāng)電壓達(dá)到12V時(shí)會(huì)進(jìn)入零負(fù)載狀態(tài),而無(wú)法在5%限度內(nèi)進(jìn)行調(diào)節(jié),。線性穩(wěn)壓器是一個(gè)可實(shí)行的解決方案,,但由于價(jià)格昂貴且會(huì)降低效率,仍不是理想的解決方案,。我們建議的解決方案是在12V輸出端使用一個(gè)磁放大器,,即便是反激式拓?fù)浣Y(jié)構(gòu)也可使用。

為了降低成本,,建議使用鐵氧體磁放大器,。然而,鐵氧體磁放大器的控制電路與傳統(tǒng)的矩形磁滯回線材料(高磁導(dǎo)率材料)的控制電路有所不用,。鐵氧體的控制電路(D1和Q1)可吸收電流以便維持輸出端供電,。

該電路已經(jīng)過(guò)全面測(cè)試。變壓器繞組設(shè)計(jì)為5V和13V輸出,。該電路在實(shí)現(xiàn)12V輸出± 5%調(diào)節(jié)的同時(shí),,甚至還可以達(dá)到低于1W的輸入功率(5V 300 mW和12V零負(fù)載)。

圖1

文章2. 使用現(xiàn)有的消弧電路提供過(guò)流保護(hù)

考慮一下5V 2A和12V 3A反激式電源,。該電源的關(guān)鍵規(guī)范之一便是當(dāng)12V輸出端達(dá)到空載或負(fù)載極輕時(shí),,對(duì)5V輸出端提供過(guò)功率保護(hù)(OPP)。這兩個(gè)輸出端都提出了± 5%的電壓調(diào)節(jié)要求,。

對(duì)于通常的解決方案來(lái)說(shuō),,使用檢測(cè)電阻會(huì)降低交叉穩(wěn)壓性能,并且保險(xiǎn)絲的價(jià)格也不菲,。而現(xiàn)在已經(jīng)有了用于過(guò)壓保護(hù)(OVP)的消弧電路,。該電路能夠同時(shí)滿足OPP和穩(wěn)壓要求,使用部分消弧電路即可實(shí)現(xiàn)該功能,。

從圖2可以看出,,R1和VR1形成了一個(gè)12V輸出端有源假負(fù)載,這樣可以在12V輸出端輕載時(shí)實(shí)現(xiàn)12V電壓調(diào)節(jié),。在5V輸出端處于過(guò)載情況下時(shí),,5V輸出端上的電壓將會(huì)下降,。假負(fù)載會(huì)吸收大量電流。R1上的電壓下降可用來(lái)檢測(cè)這一大量電流,。Q1導(dǎo)通并觸發(fā)OPP電路,。

圖2

文章 3. 有源并聯(lián)穩(wěn)壓器與假負(fù)載

在線電壓AC到低壓DC的開(kāi)關(guān)電源產(chǎn)品領(lǐng)域中,反激式是目前最流行的拓?fù)浣Y(jié)構(gòu),。這其中的一個(gè)主要原因是其獨(dú)有的成本效益,,只需向變壓器次級(jí)添加額外的繞組即可提供多路輸出電壓

通常,,反饋來(lái)自對(duì)輸出容差有最嚴(yán)格要求的輸出端,。然后,該輸出端會(huì)定義所有其它次級(jí)繞組的每伏圈數(shù),。由于漏感效應(yīng)的存在,,輸出端不能始終獲得所需的輸出電壓交叉穩(wěn)壓,,特別是在給定輸出端因其它輸出端滿載而可能無(wú)負(fù)載或負(fù)載極輕的情況下更是如此,。

可以使用后級(jí)穩(wěn)壓器或假負(fù)載來(lái)防止輸出端電壓在此類(lèi)情況下升高。然而,,由于后級(jí)穩(wěn)壓器或假負(fù)載會(huì)造成成本增加和效率降低,,因而它們?nèi)狈ψ銐虻奈Γ貏e是在近年來(lái)對(duì)多種消費(fèi)類(lèi)應(yīng)用中的空載和/或待機(jī)輸入功耗的法規(guī)要求越來(lái)越嚴(yán)格的情況下,,這一設(shè)計(jì)開(kāi)始受到冷落,。圖3中所示的有源并聯(lián)穩(wěn)壓器不僅可以解決穩(wěn)壓?jiǎn)栴},還能夠最大限度地降低成本和效率影響,。

圖3:用于多路輸出反激式轉(zhuǎn)換器的有源并聯(lián)穩(wěn)壓器,。

該電路的工作方式如下:兩個(gè)輸出端都處于穩(wěn)壓范圍時(shí),電阻分壓器R14和R13會(huì)偏置三極管Q5,,進(jìn)而使Q4和Q1保持在關(guān)斷狀態(tài),。在這樣的工作條件下,流經(jīng)Q5的電流便充當(dāng)5V輸出端很小的假負(fù)載,。

5V輸出端與3.3V輸出端的標(biāo)準(zhǔn)差異為1.7V,。當(dāng)負(fù)載要求從3.3V輸出端獲得額外的電流,而從5V輸出端輸出的負(fù)載電流并未等量增加時(shí),,其輸出電壓與3.3V輸出端的電壓相比將會(huì)升高,。由于電壓差異約超過(guò)100 mV,Q5將偏置截止,,從而導(dǎo)通Q4和Q1并允許電流從5V輸出端流到3.3V輸出端,。該電流將降低5V輸出端的電壓,進(jìn)而縮小兩個(gè)輸出端之間的電壓差異,。

Q1中的電流量由兩個(gè)輸出端的電壓差異決定,。因此,,該電路可以使兩個(gè)輸出端均保持穩(wěn)壓,而不受其負(fù)載的影響,,即使在3.3V輸出端滿載而5V輸出端無(wú)負(fù)載這樣最差的情況下,,仍能保持穩(wěn)壓。設(shè)計(jì)中的Q5和Q4可以提供溫度補(bǔ)償,,這是由于每個(gè)三極管中的VBE溫度變化都可以彼此抵消,。二極管D8和D9不是必需的器件,但可用于降低Q1中的功率耗散,,從而無(wú)需在設(shè)計(jì)添加散熱片,。

該電路只對(duì)兩個(gè)電壓之間的相對(duì)差異作出反應(yīng),在滿載和輕負(fù)載條件下基本不起作用,。由于并聯(lián)穩(wěn)壓器是從5V輸出端連接到3.3V輸出端,,因此與接地的并聯(lián)穩(wěn)壓器相比,該電路的有源耗散可以降低66%,。其結(jié)果是在滿載時(shí)保持高效率,,從輕負(fù)載到無(wú)負(fù)載的功耗保持較低水平。

文章4. 采用StackFET.的高壓輸入開(kāi)關(guān)電源

使用三相交流電進(jìn)行工作的工業(yè)設(shè)備常常需要一個(gè)可以為模擬和數(shù)字電路提供穩(wěn)定低壓直流電的輔助電源級(jí),。此類(lèi)應(yīng)用的范例包括工業(yè)傳動(dòng)器,、UPS系統(tǒng)和能量計(jì)。

此類(lèi)電源的規(guī)格比現(xiàn)成的標(biāo)準(zhǔn)開(kāi)關(guān)所需的規(guī)格要嚴(yán)格得多,。不僅這些應(yīng)用中的輸入電壓更高,,而且為工業(yè)環(huán)境中的三相應(yīng)用所設(shè)計(jì)的設(shè)備還必須容許非常寬的波動(dòng)—包括跌落時(shí)間延長(zhǎng)、電涌以及一個(gè)或多個(gè)相的偶然丟失,。而且,,此類(lèi)輔助電源的指定輸入電壓范圍可以達(dá)到57 VAC至580 VAC之寬。

設(shè)計(jì)如此寬范圍的開(kāi)關(guān)電源可以說(shuō)是一大挑戰(zhàn),,主要在于高壓MOSFET的成本較高以及傳統(tǒng)的PWM控制環(huán)路的動(dòng)態(tài)范圍的限制,。StackFET技術(shù)允許組合使用不太昂貴的、額定電壓為600V的低壓MOSFET和Power Integrations提供的集成電源控制器,,這樣便可設(shè)計(jì)出簡(jiǎn)單便宜并能夠在寬輸入電壓范圍內(nèi)工作的開(kāi)關(guān)電源,。

圖4:采用StackFET技術(shù)的三相輸入3W開(kāi)關(guān)電源。

該電路的工作方式如下:電路的輸入端電流可以來(lái)自三相三線或四線系統(tǒng),,甚至來(lái)自單相系統(tǒng),。三相整流器由二極管D1-D8構(gòu)成。電阻R1-R4可以提供浪涌電流限制,。如果使用可熔電阻,,這些電阻便可在故障期間安全斷開(kāi),無(wú)需單獨(dú)配備保險(xiǎn)絲,。pi濾波器由C5,、C6,、C7、C8和L1構(gòu)成,,可以過(guò)濾整流直流電壓,。

電阻R13和R15用于平衡輸入濾波電容之間的電壓。

當(dāng)集成開(kāi)關(guān)(U1)內(nèi)的MOSFET導(dǎo)通時(shí),,Q1的源端將被拉低,,R6、R7和R8將提供柵極電流,,并且VR1到VR3的結(jié)電容將導(dǎo)通Q1,。齊納二極管VR4用于限制施加給Q1的柵極源電壓。當(dāng)U1內(nèi)的MOSFET關(guān)斷時(shí),,U1的最大化漏極電壓將被一個(gè)由VR1,、VR2和VR3構(gòu)成的450 V箝位網(wǎng)絡(luò)箝位。這會(huì)將U1的漏極電壓限制到接近450 V,。

與Q1相連的繞組結(jié)束時(shí)的任何額外電壓都會(huì)被施加給Q1,。這種設(shè)計(jì)可以有效地分配Q1和U1之間的整流輸入直流電壓和反激式電壓總量。電阻R9用于限制開(kāi)關(guān)切換期間的高頻振蕩,,由于反激間隔期間存在漏感,,箝位網(wǎng)絡(luò)VR5,、D9和R10則用于限制初級(jí)上的峰值電壓,。

輸出整流由D1提供。C2為輸出濾波器,。L2和C3構(gòu)成次級(jí)濾波器,,以減小輸出端的開(kāi)關(guān)紋波。

當(dāng)輸出電壓超過(guò)光耦二極管和VR6的總壓降時(shí),,VR6將導(dǎo)通,。輸出電壓的變化會(huì)導(dǎo)致流經(jīng)U2內(nèi)的光耦二極管的電流發(fā)生變化,進(jìn)而改變流經(jīng)U2B內(nèi)的晶體管的電流,。當(dāng)此電流超出U1的FB引腳閾值電流時(shí),,將抑制下一個(gè)周期。輸出穩(wěn)壓可以通過(guò)控制使能及抑制周期的數(shù)量來(lái)實(shí)現(xiàn),。一旦開(kāi)關(guān)周期被開(kāi)啟,,該周期便會(huì)在電流上升到U1的內(nèi)部電流限制時(shí)結(jié)束。R11用于限制瞬態(tài)負(fù)載時(shí)流經(jīng)光耦器的電流,,以及調(diào)整反饋環(huán)路的增益,。電阻R12用于偏置齊納二極管VR6。

IC U1 (LNK 304)具有內(nèi)置功能,,因此可根據(jù)反饋信號(hào)消失,、輸出端短路以及過(guò)載對(duì)該電路提供保護(hù),。由于U1直接由其漏極引腳供電,因此不需要在變壓器上添加額外的偏置繞組,。C4用于提供內(nèi)部電源去耦,。

5V輸出端與3.3V輸出端的標(biāo)準(zhǔn)差異為1.7V。當(dāng)負(fù)載要求從3.3V輸出端獲得額外的電流,,而從5V輸出端輸出的負(fù)載電流并未等量增加時(shí),,其輸出電壓與3.3V輸出端的電壓相比將會(huì)升高。由于電壓差異約超過(guò)100 mV,,Q5將偏置截止,,從而導(dǎo)通Q4和Q1并允許電流從5V輸出端流到3.3V輸出端。該電流將降低5V輸出端的電壓,,進(jìn)而縮小兩個(gè)輸出端之間的電壓差異,。

Q1中的電流量由兩個(gè)輸出端的電壓差異決定。因此,,該電路可以使兩個(gè)輸出端均保持穩(wěn)壓,,而不受其負(fù)載的影響,即使在3.3V輸出端滿載而5V輸出端無(wú)負(fù)載這樣最差的情況下,,仍能保持穩(wěn)壓,。設(shè)計(jì)中的Q5和Q4可以提供溫度補(bǔ)償,這是由于每個(gè)三極管中的VBE溫度變化都可以彼此抵消,。二極管D8和D9不是必需的器件,,但可用于降低Q1中的功率耗散,從而無(wú)需在設(shè)計(jì)添加散熱片,。

該電路只對(duì)兩個(gè)電壓之間的相對(duì)差異作出反應(yīng),,在滿載和輕負(fù)載條件下基本不起作用。由于并聯(lián)穩(wěn)壓器是從5V輸出端連接到3.3V輸出端,,因此與接地的并聯(lián)穩(wěn)壓器相比,,該電路的有源耗散可以降低66%。其結(jié)果是在滿載時(shí)保持高效率,,從輕負(fù)載到無(wú)負(fù)載的功耗保持較低水平,。

文章4. 采用StackFET.的高壓輸入開(kāi)關(guān)電源

使用三相交流電進(jìn)行工作的工業(yè)設(shè)備常常需要一個(gè)可以為模擬和數(shù)字電路提供穩(wěn)定低壓直流電的輔助電源級(jí)。此類(lèi)應(yīng)用的范例包括工業(yè)傳動(dòng)器,、UPS系統(tǒng)和能量計(jì),。

此類(lèi)電源的規(guī)格比現(xiàn)成的標(biāo)準(zhǔn)開(kāi)關(guān)所需的規(guī)格要嚴(yán)格得多。不僅這些應(yīng)用中的輸入電壓更高,,而且為工業(yè)環(huán)境中的三相應(yīng)用所設(shè)計(jì)的設(shè)備還必須容許非常寬的波動(dòng)—包括跌落時(shí)間延長(zhǎng),、電涌以及一個(gè)或多個(gè)相的偶然丟失。而且,此類(lèi)輔助電源的指定輸入電壓范圍可以達(dá)到57 VAC至580 VAC之寬,。

設(shè)計(jì)如此寬范圍的開(kāi)關(guān)電源可以說(shuō)是一大挑戰(zhàn),,主要在于高壓MOSFET的成本較高以及傳統(tǒng)的PWM控制環(huán)路的動(dòng)態(tài)范圍的限制。StackFET技術(shù)允許組合使用不太昂貴的,、額定電壓為600V的低壓MOSFET和Power Integrations提供的集成電源控制器,,這樣便可設(shè)計(jì)出簡(jiǎn)單便宜并能夠在寬輸入電壓范圍內(nèi)工作的開(kāi)關(guān)電源。

圖4:采用StackFET技術(shù)的三相輸入3W開(kāi)關(guān)電源,。

該電路的工作方式如下:電路的輸入端電流可以來(lái)自三相三線或四線系統(tǒng),,甚至來(lái)自單相系統(tǒng)。三相整流器由二極管D1-D8構(gòu)成,。電阻R1-R4可以提供浪涌電流限制,。如果使用可熔電阻,這些電阻便可在故障期間安全斷開(kāi),,無(wú)需單獨(dú)配備保險(xiǎn)絲,。pi濾波器由C5、C6,、C7,、C8和L1構(gòu)成,可以過(guò)濾整流直流電壓,。

電阻R13和R15用于平衡輸入濾波電容之間的電壓,。

當(dāng)集成開(kāi)關(guān)(U1)內(nèi)的MOSFET導(dǎo)通時(shí),Q1的源端將被拉低,,R6,、R7和R8將提供柵極電流,并且VR1到VR3的結(jié)電容將導(dǎo)通Q1,。齊納二極管VR4用于限制施加給Q1的柵極源電壓,。當(dāng)U1內(nèi)的MOSFET關(guān)斷時(shí),,U1的最大化漏極電壓將被一個(gè)由VR1,、VR2和VR3構(gòu)成的450 V箝位網(wǎng)絡(luò)箝位。這會(huì)將U1的漏極電壓限制到接近450 V,。

與Q1相連的繞組結(jié)束時(shí)的任何額外電壓都會(huì)被施加給Q1,。這種設(shè)計(jì)可以有效地分配Q1和U1之間的整流輸入直流電壓和反激式電壓總量。電阻R9用于限制開(kāi)關(guān)切換期間的高頻振蕩,,由于反激間隔期間存在漏感,,箝位網(wǎng)絡(luò)VR5、D9和R10則用于限制初級(jí)上的峰值電壓,。

輸出整流由D1提供,。C2為輸出濾波器。L2和C3構(gòu)成次級(jí)濾波器,,以減小輸出端的開(kāi)關(guān)紋波,。

當(dāng)輸出電壓超過(guò)光耦二極管和VR6的總壓降時(shí),,VR6將導(dǎo)通。輸出電壓的變化會(huì)導(dǎo)致流經(jīng)U2內(nèi)的光耦二極管的電流發(fā)生變化,,進(jìn)而改變流經(jīng)U2B內(nèi)的晶體管的電流,。當(dāng)此電流超出U1的FB引腳閾值電流時(shí),將抑制下一個(gè)周期,。輸出穩(wěn)壓可以通過(guò)控制使能及抑制周期的數(shù)量來(lái)實(shí)現(xiàn),。一旦開(kāi)關(guān)周期被開(kāi)啟,該周期便會(huì)在電流上升到U1的內(nèi)部電流限制時(shí)結(jié)束,。R11用于限制瞬態(tài)負(fù)載時(shí)流經(jīng)光耦器的電流,,以及調(diào)整反饋環(huán)路的增益。電阻R12用于偏置齊納二極管VR6,。

IC U1 (LNK 304)具有內(nèi)置功能,,因此可根據(jù)反饋信號(hào)消失、輸出端短路以及過(guò)載對(duì)該電路提供保護(hù),。由于U1直接由其漏極引腳供電,,因此不需要在變壓器上添加額外的偏置繞組。C4用于提供內(nèi)部電源去耦,。


文章5. 使用TopSwitch.-GX設(shè)計(jì)正激式轉(zhuǎn)換器

電路能確保變壓器在每個(gè)周期進(jìn)行復(fù)位,,因此可大大簡(jiǎn)化使用TopSwitch-GX設(shè)計(jì)正激式轉(zhuǎn)換器的過(guò)程。

圖5:正激式轉(zhuǎn)換器復(fù)位檢測(cè)方案,。

檢測(cè)電路與正激式轉(zhuǎn)換器偏置繞組配合使用可以檢測(cè)關(guān)斷期間的電壓波形,。當(dāng)此間電壓較高時(shí),信號(hào)會(huì)應(yīng)用于TopSwitch-GX L引腳,,使其斷開(kāi)與S引腳的連接,,從而抑制內(nèi)部MOSFET開(kāi)始另一個(gè)導(dǎo)通周期。當(dāng)偏置繞組上的電壓信號(hào)開(kāi)始衰弱時(shí),,即表示變壓器已經(jīng)復(fù)位,,L引腳與S引腳相連,開(kāi)關(guān)已開(kāi)啟,。

文章6. 選擇好的整流二極管可以簡(jiǎn)化AC/DC轉(zhuǎn)換器中的EMI濾波器電路并降低其成本

該電路可以簡(jiǎn)化AC/DC轉(zhuǎn)換器中的EMI濾波器電路并降低其成本,。

要使AC/DC電源符合EMI標(biāo)準(zhǔn),就需要使用大量的EMI濾波器器件,,例如X電容和Y電容,。AC/DC電源的標(biāo)準(zhǔn)輸入電路都包括一個(gè)橋式整流器,用于對(duì)輸入電壓進(jìn)行整流(通常為50-60 Hz),。由于這是低頻AC輸入電壓,,因此可以使用如1N400X系列二極管等標(biāo)準(zhǔn)二極管,另一個(gè)原因是這些二極管的價(jià)格是最便宜的。

這些濾波器器件用于降低電源產(chǎn)生的EMI,,以便符合已發(fā)布的EMI限制,。然而,由于用來(lái)記錄EMI的測(cè)量只在150 kHz時(shí)才開(kāi)始,,而AC線電壓頻率只有50或60 Hz,,因此橋式整流器中使用的標(biāo)準(zhǔn)二極管(參見(jiàn)圖1)的反向恢復(fù)時(shí)間較長(zhǎng),且通常與EMI產(chǎn)生沒(méi)有直接關(guān)系,。

然而,,過(guò)去的輸入濾波電路中有時(shí)會(huì)包括一些與橋式整流器并聯(lián)的電容,用來(lái)抑制低頻輸入電壓整流所造成的任何高頻波形,。

如果在橋式整流器中使用快速恢復(fù)二極管,,就無(wú)需使用這些電容了。當(dāng)這些二極管之間的電壓開(kāi)始反向時(shí),,它們的恢復(fù)速度非???參見(jiàn)圖2)。這樣通過(guò)降低隨后的高頻關(guān)斷急變以及EMI,,可以降低AC輸入線中的雜散線路電感激勵(lì),。由于2個(gè)二極管可以在每半個(gè)周期中實(shí)現(xiàn)導(dǎo)通,因此4個(gè)二極管中只需要2個(gè)是快速恢復(fù)類(lèi)型即可,。同樣,,在每半個(gè)周期進(jìn)行導(dǎo)通的兩個(gè)二極管中,只需要其中一個(gè)二極管具有快速恢復(fù)特性即可,。

圖6:在AC輸入端使用橋式整流器的SMPS的典型輸入級(jí),。

圖7:輸入電壓和電流波形顯示了反向恢復(fù)結(jié)束時(shí)的二極管急變。

文章7. 浮動(dòng)恒流源允許超寬范圍的輸入電壓

對(duì)Power Integrations的多數(shù)產(chǎn)品而言,,數(shù)據(jù)手冊(cè)中限制的用于確保正常啟動(dòng)和起作用的最小漏極電壓為50 V,。但是,如果通過(guò)外部電源向旁路引腳饋電,,則芯片可接收外部供電,,且即使在較低的輸入電壓下也可啟動(dòng)和工作。

圖8:功率控制器的浮動(dòng)恒流源電路,。

圖八所示的啟動(dòng)電路為浮動(dòng)恒流源,,它為整個(gè)輸入電壓范圍內(nèi)的TinySwitch-III的旁路(BP)引腳提供大約600 μA的恒流。

恒流值由R2 和VR1確定:

式1

該電路源自基本的單晶體管電流源,。該電路采用了一個(gè)齊納二極管,為Q2 (NPN)的基極引出端設(shè)置參考電壓,,并以此對(duì)流經(jīng)電阻R2的固定電壓進(jìn)行編程,,從而設(shè)置恒流值。然而,鑒于輸入電源范圍的異常寬廣性,,參考齊納二極管的偏置電流在很大范圍內(nèi)會(huì)有所差異,。這將導(dǎo)致功率耗散增加及編程的恒流發(fā)生偏移。

要克服上述難題,,需要由其他的電流源(由Q1 (PNP)與R1形成)提供偏置電流,。將等同于VBE的恒壓強(qiáng)加于R1,這樣可為整個(gè)工作范圍內(nèi)的參考齊納二極管提供偏置電流補(bǔ)償,。

晶體管Q2以較低輸入電壓提供恒流,,而Q1則以較高的輸入電壓提供恒流。圖2顯示了電流流經(jīng)Q1和Q2時(shí)的模擬結(jié)果,。輸入電壓達(dá)到大約50 VDC時(shí),,Q2將提供恒流。輸入電壓達(dá)到50 VDC及以上時(shí),,經(jīng)過(guò)Q2的電流將減弱,,而經(jīng)過(guò)Q1的電流則呈線性增加。輸入電壓達(dá)到最大值375 VDC時(shí),,則主要由Q1提供恒流,。

R3用于限制整個(gè)電路在輸入電壓最大時(shí)的輸入電流。

圖9:超過(guò)輸入電壓時(shí)的晶體管電流與總的旁路(BP)引腳電流,。

非線性電流由于齊納二極管VR1的非線性活動(dòng)而上升,。輸入電壓大約為60 VDC時(shí),齊納二極管開(kāi)始有電壓,。

文章8. 用軟啟動(dòng)禁止低成本輸出來(lái)遏制電流尖峰

為滿足嚴(yán)格的待機(jī)功耗規(guī)范要求,,一些多路輸出電源被設(shè)計(jì)為在待機(jī)信號(hào)為活動(dòng)狀態(tài)時(shí)斷開(kāi)輸出連接。

通常情況下,,通過(guò)關(guān)閉串聯(lián)旁路雙極晶體管(BJT)或MOSFET即可實(shí)現(xiàn)上述目的,。對(duì)于低電流輸出,如果在設(shè)計(jì)電源變壓器時(shí)充分考慮到晶體管的額外壓降情況,,則BJT可成為MOSFET的合適替代品,,且成本更為低廉。

圖十所示為簡(jiǎn)單的BJT串聯(lián)旁路開(kāi)關(guān),,電壓為12 V,,輸出電流強(qiáng)度為100 mA,并帶有一超大電容(CLOAD),。晶體管Q1為串聯(lián)旁路元件,,由Q2根據(jù)待機(jī)信號(hào)的狀態(tài)來(lái)控制其開(kāi)關(guān)。電阻R1的值是額定的,,這樣可確保Q1有足夠的基值電流在最小Beta和最大的輸出電流下以飽和的狀態(tài)工作,。PI建議額外添加一個(gè)電容器(Cnew),,用以調(diào)節(jié)導(dǎo)通時(shí)的瞬態(tài)電流。如果不添加Cnew,,Q1在導(dǎo)通后即迅速進(jìn)入電容性負(fù)載,,并因而產(chǎn)生較大的電流尖峰。為調(diào)節(jié)該瞬態(tài)尖峰,,需要增加Q1的容量,,這便導(dǎo)致了成本的增加。

用作Q1額外“密勒電容”的Cnew可以消除電流尖峰,。該額外電容可限制Q1集電極的dv/dt值,。dv/dt值越小,流入Cload的充電電流就越少,。為Cnew指定電容值,,使得Q1的理想輸出dv/dt值與Cnew值相乘等于流入R1的電流。

式2

圖10:簡(jiǎn)單的軟啟動(dòng)電路可以禁止待機(jī)時(shí)的電源輸出,,同時(shí)消除導(dǎo)通時(shí)的電流尖峰,,因此,可利用小型晶體管(Q1)來(lái)保持低成本,。




 
此內(nèi)容為AET網(wǎng)站原創(chuàng),,未經(jīng)授權(quán)禁止轉(zhuǎn)載。