《電子技術(shù)應(yīng)用》
您所在的位置:首頁(yè) > 模擬設(shè)計(jì) > 解決方案 > 運(yùn)算放大器的簡(jiǎn)易測(cè)量

運(yùn)算放大器的簡(jiǎn)易測(cè)量

2011-05-15
作者:James Bryant

  運(yùn)算放大器是差分輸入,、單端輸出的極高增益放大器,常用于高精度模擬電路,,因此必須精確測(cè)量其性能,。但在開(kāi)環(huán)測(cè)量中,,其開(kāi)環(huán)增益可能高達(dá)107或更高,而拾取,、雜散電流或塞貝克(熱電偶)效應(yīng)可能會(huì)在放大器輸入端產(chǎn)生非常小的電壓,,這樣誤差將難以避免。

  通過(guò)使用伺服環(huán)路,,可以大大簡(jiǎn)化測(cè)量過(guò)程,,強(qiáng)制放大器輸入調(diào)零,使得待測(cè)放大器能夠測(cè)量自身的誤差,。圖1顯示了一個(gè)運(yùn)用該原理的多功能電路,,它利用一個(gè)輔助運(yùn)放作為積分器,來(lái)建立一個(gè)具有極高直流開(kāi)環(huán)增益的穩(wěn)定環(huán)路,。開(kāi)關(guān)為執(zhí)行下面所述的各種測(cè)試提供了便利,。

  

  圖1. 基本運(yùn)算放大器測(cè)量電路

  圖1所示電路能夠?qū)⒋蟛糠譁y(cè)量誤差降至最低,支持精確測(cè)量大量直流和少量交流參數(shù),。附加的“輔助”運(yùn)算放大器無(wú)需具有比待測(cè)運(yùn)算放大器更好的性能,,其直流開(kāi)環(huán)增益最好能達(dá)到106或更高,。如果待測(cè)器件(DUT)的失調(diào)電壓可能超過(guò)幾mV,則輔助運(yùn)放應(yīng)采用±15 V電源供電(如果DUT的輸入失調(diào)電壓可能超過(guò)10 mV,,則需要減小99.9 kΩ電阻R3的阻值,。)

  DUT的電源電壓+V和–V幅度相等、極性相反,??傠娫措妷豪硭?dāng)然是2 × V。該電路使用對(duì)稱(chēng)電源,,即使“單電源”運(yùn)放也是如此,,因?yàn)橄到y(tǒng)的地以電源的中間電壓為參考。

  作為積分器的輔助放大器在直流時(shí)配置為開(kāi)環(huán)(最高增益),,但其輸入電阻和反饋電容將其帶寬限制為幾Hz,。這意味著,DUT輸出端的直流電壓被輔助放大器以最高增益放大,,并通過(guò)一個(gè)1000:1衰減器施加于DUT的同相輸入端,。負(fù)反饋將DUT輸出驅(qū)動(dòng)至地電位。(事實(shí)上,,實(shí)際電壓是輔助放大器的失調(diào)電壓,,更精確地說(shuō)是該失調(diào)電壓加上輔助放大器的偏置電流在100 kΩ電阻上引起的壓降,但它非常接近地電位,,因此無(wú)關(guān)緊要,,特別是考慮到測(cè)量期間此點(diǎn)的電壓變化不大可能超過(guò)幾mV)。

  測(cè)試點(diǎn)TP1上的電壓是施加于DUT輸入端的校正電壓(與誤差在幅度上相等)的1000倍,,約為數(shù)十mV或更大,,因此可以相當(dāng)輕松地進(jìn)行測(cè)量。

  理想運(yùn)算放大器的失調(diào)電壓(Vos)為0,,即當(dāng)兩個(gè)輸入端連在一起并保持中間電源電壓時(shí),,輸出電壓同樣為中間電源電壓。現(xiàn)實(shí)中的運(yùn)算放大器則具有幾微伏到幾毫伏不等的失調(diào)電壓,,因此必須將此范圍內(nèi)的電壓施加于輸入端,,使輸出處于中間電位。

  圖2給出了最基本測(cè)試——失調(diào)電壓測(cè)量的配置,。當(dāng)TP1上的電壓為DUT失調(diào)電壓的1000倍時(shí),,DUT輸出電壓處于地電位。

  

  圖2. 失調(diào)電壓測(cè)量

  運(yùn)算放大器是差分輸入,、單端輸出的極高增益放大器,,常用于高精度模擬電路,因此必須精確測(cè)量其性能。但在開(kāi)環(huán)測(cè)量中,,其開(kāi)環(huán)增益可能高達(dá)107或更高,,而拾取、雜散電流或塞貝克(熱電偶)效應(yīng)可能會(huì)在放大器輸入端產(chǎn)生非常小的電壓,,這樣誤差將難以避免,。

  通過(guò)使用伺服環(huán)路,可以大大簡(jiǎn)化測(cè)量過(guò)程,,強(qiáng)制放大器輸入調(diào)零,,使得待測(cè)放大器能夠測(cè)量自身的誤差。圖1顯示了一個(gè)運(yùn)用該原理的多功能電路,,它利用一個(gè)輔助運(yùn)放作為積分器,,來(lái)建立一個(gè)具有極高直流開(kāi)環(huán)增益的穩(wěn)定環(huán)路。開(kāi)關(guān)為執(zhí)行下面所述的各種測(cè)試提供了便利,。

  

  圖1. 基本運(yùn)算放大器測(cè)量電路

  圖1所示電路能夠?qū)⒋蟛糠譁y(cè)量誤差降至最低,,支持精確測(cè)量大量直流和少量交流參數(shù)。附加的“輔助”運(yùn)算放大器無(wú)需具有比待測(cè)運(yùn)算放大器更好的性能,,其直流開(kāi)環(huán)增益最好能達(dá)到106或更高,。如果待測(cè)器件(DUT)的失調(diào)電壓可能超過(guò)幾mV,則輔助運(yùn)放應(yīng)采用±15 V電源供電(如果DUT的輸入失調(diào)電壓可能超過(guò)10 mV,,則需要減小99.9 kΩ電阻R3的阻值,。)

  DUT的電源電壓+V和–V幅度相等、極性相反,??傠娫措妷豪硭?dāng)然是2 × V。該電路使用對(duì)稱(chēng)電源,,即使“單電源”運(yùn)放也是如此,因?yàn)橄到y(tǒng)的地以電源的中間電壓為參考,。

  作為積分器的輔助放大器在直流時(shí)配置為開(kāi)環(huán)(最高增益),,但其輸入電阻和反饋電容將其帶寬限制為幾Hz。這意味著,,DUT輸出端的直流電壓被輔助放大器以最高增益放大,,并通過(guò)一個(gè)1000:1衰減器施加于DUT的同相輸入端。負(fù)反饋將DUT輸出驅(qū)動(dòng)至地電位,。(事實(shí)上,,實(shí)際電壓是輔助放大器的失調(diào)電壓,更精確地說(shuō)是該失調(diào)電壓加上輔助放大器的偏置電流在100 kΩ電阻上引起的壓降,,但它非常接近地電位,,因此無(wú)關(guān)緊要,特別是考慮到測(cè)量期間此點(diǎn)的電壓變化不大可能超過(guò)幾mV)。

  測(cè)試點(diǎn)TP1上的電壓是施加于DUT輸入端的校正電壓(與誤差在幅度上相等)的1000倍,,約為數(shù)十mV或更大,,因此可以相當(dāng)輕松地進(jìn)行測(cè)量。

  理想運(yùn)算放大器的失調(diào)電壓(Vos)為0,,即當(dāng)兩個(gè)輸入端連在一起并保持中間電源電壓時(shí),,輸出電壓同樣為中間電源電壓。現(xiàn)實(shí)中的運(yùn)算放大器則具有幾微伏到幾毫伏不等的失調(diào)電壓,,因此必須將此范圍內(nèi)的電壓施加于輸入端,,使輸出處于中間電位。

  圖2給出了最基本測(cè)試——失調(diào)電壓測(cè)量的配置,。當(dāng)TP1上的電壓為DUT失調(diào)電壓的1000倍時(shí),,DUT輸出電壓處于地電位。

  

  圖2. 失調(diào)電壓測(cè)量

  理想運(yùn)算放大器具有無(wú)限大的輸入阻抗,,無(wú)電流流入其輸入端,。但在現(xiàn)實(shí)中,會(huì)有少量“偏置”電流流入反相和同相輸入端(分別為Ib–和Ib+),,它們會(huì)在高阻抗電路中引起顯著的失調(diào)電壓,。根據(jù)運(yùn)算放大器類(lèi)型的不同,這種偏置電流可能為幾fA(1 fA = 10–15 A,,每隔幾微秒流過(guò)一個(gè)電子)至幾nA,;在某些超快速運(yùn)算放大器中,甚至達(dá)到1 - 2 μA,。圖3顯示如何測(cè)量這些電流,。

  

  圖3. 失調(diào)和偏置電流測(cè)量

  該電路與圖2的失調(diào)電壓電路基本相同,只是DUT輸入端增加了兩個(gè)串聯(lián)電阻R6和R7,。這些電阻可以通過(guò)開(kāi)關(guān)S1和S2短路,。當(dāng)兩個(gè)開(kāi)關(guān)均閉合時(shí),該電路與圖2完全相同,。當(dāng)S1斷開(kāi)時(shí),,反相輸入端的偏置電流流入Rs,電壓差增加到失調(diào)電壓上,。通過(guò)測(cè)量TP1的電壓變化(=1000 Ib–×Rs),,可以計(jì)算出Ib–。同樣,,當(dāng)S1閉合且S2斷開(kāi)時(shí),,可以測(cè)量Ib+。如果先在S1和S2均閉合時(shí)測(cè)量TP1的電壓,,然后在S1和S2均斷開(kāi)時(shí)再次測(cè)量TP1的電壓,,則通過(guò)該電壓的變化可以測(cè)算出“輸入失調(diào)電流”Ios,,即Ib+與Ib–之差,。R6和R7的阻值取決于要測(cè)量的電流大小,。

  如果Ib的值在5 pA左右,,則會(huì)用到大電阻,使用該電路將非常困難,,可能需要使用其它技術(shù),,牽涉到Ib給低泄漏電容(用于代替Rs)充電的速率。

  當(dāng)S1和S2閉合時(shí),,Ios仍會(huì)流入100 Ω電阻,,導(dǎo)致Vos誤差,但在計(jì)算時(shí)通??梢院雎运?,除非Ios足夠大,產(chǎn)生的誤差大于實(shí)測(cè)Vos的1%,。

  運(yùn)算放大器的開(kāi)環(huán)直流增益可能非常高,,107以上的增益也并非罕見(jiàn),但250,,000到2,,000,000的增益更為常見(jiàn),。直流增益的測(cè)量方法是通過(guò)S6切換DUT輸出端與1 V基準(zhǔn)電壓之間的R5,,迫使DUT的輸出改變一定的量(圖4中為1 V,但如果器件采用足夠大的電源供電,,可以規(guī)定為10 V),。如果R5處于+1 V,若要使輔助放大器的輸入保持在0附近不變,,DUT輸出必須變?yōu)?ndash;1 V,。

  

  圖4. 直流增益測(cè)量

  TP1的電壓變化衰減1000:1后輸入DUT,導(dǎo)致輸出改變1 V,,由此很容易計(jì)算增益(= 1000 × 1 V/TP1),。

  為了測(cè)量開(kāi)環(huán)交流增益,需要在DUT輸入端注入一個(gè)所需頻率的小交流信號(hào),,并測(cè)量相應(yīng)的輸出信號(hào)(圖5中的TP2),。完成后,,輔助放大器繼續(xù)使DUT輸出端的平均直流電平保持穩(wěn)定,。

  

  圖5. 交流增益測(cè)量

  圖5中,交流信號(hào)通過(guò)10,,000:1的衰減器施加于DUT輸入端,。對(duì)于開(kāi)環(huán)增益可能接近直流值的低頻測(cè)量,必須使用如此大的衰減值。(例如,,在增益為1,,000,000的頻率時(shí),,1 V rms信號(hào)會(huì)將100 μV施加于放大器輸入端,,放大器則試圖提供100 V rms輸出,導(dǎo)致放大器飽和,。)因此,,交流測(cè)量的頻率一般是幾百Hz到開(kāi)環(huán)增益降至1時(shí)的頻率;在需要低頻增益數(shù)據(jù)時(shí),,應(yīng)非常小心地利用較低的輸入幅度進(jìn)行測(cè)量,。所示的簡(jiǎn)單衰減器只能在100 kHz以下的頻率工作,即使小心處理了雜散電容也不能超過(guò)該頻率,。如果涉及到更高的頻率,,則需要使用更復(fù)雜的電路。

  運(yùn)算放大器的共模抑制比(CMRR)指共模電壓變化導(dǎo)致的失調(diào)電壓視在變化與所施加的共模電壓變化之比,。在DC時(shí),,它一般在80 dB至120 dB之間,但在高頻時(shí)會(huì)降低,。

  測(cè)試電路非常適合測(cè)量CMRR(圖6),。它不是將共模電壓施加于DUT輸入端,以免低電平效應(yīng)破壞測(cè)量,,而是改變電源電壓(相對(duì)于輸入的同一方向,,即共模方向),電路其余部分則保持不變,。

  

  圖6. 直流CMRR測(cè)量

  在圖6所示電路中,,在TP1測(cè)量失調(diào)電壓,電源電壓為±V(本例中為+2.5 V和–2.5 V),,并且兩個(gè)電源電壓再次上移+1 V(至+3.5 V和–1.5 V),。失調(diào)電壓的變化對(duì)應(yīng)于1 V的共模電壓變化,因此直流CMRR為失調(diào)電壓與1 V之比,。

  CMRR衡量失調(diào)電壓相對(duì)于共模電壓的變化,,總電源電壓則保持不變。電源抑制比(PSRR)則相反,,它是指失調(diào)電壓的變化與總電源電壓的變化之比,,共模電壓保持中間電源電壓不變(圖7)。

  

  圖7. 直流PSRR測(cè)量

  所用的電路完全相同,,不同之處在于總電源電壓發(fā)生改變,,而共模電平保持不變,。本例中,電源電壓從+2.5 V和–2.5 V切換到+3 V和–3 V,,總電源電壓從5 V變到6 V,。共模電壓仍然保持中間電源電壓。計(jì)算方法也相同(1000 × TP1/1 V),。

  為了測(cè)量交流CMRR和PSRR,,需要用電壓來(lái)調(diào)制電源電壓,如圖8和圖9所示,。DUT繼續(xù)在直流開(kāi)環(huán)下工作,,但確切的增益由交流負(fù)反饋決定(圖中為100倍)。

  

  圖8. 交流CMRR測(cè)量

  為了測(cè)量交流CMRR,,利用幅度為1 V峰值的交流電壓調(diào)制DUT的正負(fù)電源,。兩個(gè)電源的調(diào)制同相,因此實(shí)際的電源電壓為穩(wěn)定的直流電壓,,但共模電壓是2V峰峰值的正弦波,,導(dǎo)致DUT輸出包括一個(gè)在TP2測(cè)量的交流電壓。

  如果TP2的交流電壓具有x V峰值的幅度(2x V峰峰值),,則折合到DUT輸入端(即放大100倍交流增益之前)的CMRR為x/100 V,,并且CMRR為該值與1 V峰值的比值。

  

  圖9. 交流PSRR測(cè)量

  交流PSRR的測(cè)量方法是將交流電壓施加于相位相差180°的正負(fù)電源,,從而調(diào)制電源電壓的幅度(本例中同樣是1 V峰值,、2 V峰峰值),而共模電壓仍然保持穩(wěn)定的直流電壓,。計(jì)算方法與上一參數(shù)的計(jì)算方法非常相似,。

  總結(jié)

  當(dāng)然,運(yùn)算放大器還有許多其它參數(shù)可能需要測(cè)量,,而且還有多種其它方法可以測(cè)量上述參數(shù),,但正如本文所示,最基本的直流和交流參數(shù)可以利用易于構(gòu)建,、易于理解,、毫無(wú)問(wèn)題的簡(jiǎn)單基本電路進(jìn)行可靠測(cè)量。

  作者簡(jiǎn)介

  James Bryant [[email protected]]從1982年起擔(dān)任ADI歐洲地區(qū)的應(yīng)用經(jīng)理,,擁有利茲大學(xué)物理與哲學(xué)學(xué)位,。他還是注冊(cè)工程師(C.Eng.)、歐洲注冊(cè)工程師(Eur.Eng.),、電機(jī)工程師協(xié)會(huì)會(huì)員(MIEE)以及對(duì)外廣播新聞處(FBIS)會(huì)員,。除了熱情鉆研工程學(xué)外,他還是一名無(wú)線電愛(ài)好者,,他的呼叫代號(hào)是G4CLF,。

本站內(nèi)容除特別聲明的原創(chuàng)文章之外,轉(zhuǎn)載內(nèi)容只為傳遞更多信息,,并不代表本網(wǎng)站贊同其觀點(diǎn),。轉(zhuǎn)載的所有的文章、圖片,、音/視頻文件等資料的版權(quán)歸版權(quán)所有權(quán)人所有,。本站采用的非本站原創(chuàng)文章及圖片等內(nèi)容無(wú)法一一聯(lián)系確認(rèn)版權(quán)者。如涉及作品內(nèi)容,、版權(quán)和其它問(wèn)題,,請(qǐng)及時(shí)通過(guò)電子郵件或電話通知我們,以便迅速采取適當(dāng)措施,,避免給雙方造成不必要的經(jīng)濟(jì)損失,。聯(lián)系電話:010-82306118;郵箱:[email protected],。