前言
通常,高頻率運(yùn)作的開關(guān)電源(SMPS)允許使用小型無源組件,,而硬開關(guān)模式則會(huì)引起開關(guān)損耗增大,,為了降低高開關(guān)頻率下的開關(guān)損耗,,業(yè)界開發(fā)了諸多軟開關(guān)技術(shù),其中負(fù)載諧振技術(shù)和零電壓轉(zhuǎn)換技術(shù)都獲得廣泛使用,。
負(fù)載諧振技術(shù)利用電容和電感在整個(gè)開關(guān)期間的諧振特性,,使得開關(guān)頻率隨著輸入電壓和負(fù)載電流而變化。開關(guān)頻率的改變,,如脈沖頻率調(diào)制 (PFM) 給含有輸入濾波器的SMPS 設(shè)計(jì)人員帶來了困難,。因?yàn)檫@里沒有用于濾波的輸出電感,,所以輸出整流二極管兩端的鉗制電壓允許設(shè)計(jì)人員選擇低額定電壓二極管。然而,,當(dāng)負(fù)載電流增加時(shí),,輸出電感的缺位給輸出電容帶來了負(fù)擔(dān),因而負(fù)載諧振技術(shù)不適用于具有高輸出電流和低輸出電壓的應(yīng)用,。另一方面,,零電壓轉(zhuǎn)換技術(shù)利用的是電路寄生成分僅在開關(guān)開啟和關(guān)斷轉(zhuǎn)換瞬間才出現(xiàn)的諧振特性。這些技術(shù)的優(yōu)勢之一是利用了寄生組件如主變壓器的漏電感和開關(guān)的輸出電容,,因而無需增添更多的外部組件來實(shí)現(xiàn)軟開關(guān),。此外,這些技術(shù)使用具有固定開關(guān)頻率的脈寬調(diào)制(PWM)技術(shù),,因而,,這些技術(shù)相比負(fù)載諧振技術(shù)更易于理解、分析和設(shè)計(jì),。
由于非對(duì)稱PWM半橋轉(zhuǎn)換器具有簡單配置和零電壓開關(guān)(ZVS)特性,,因此是使用零電壓轉(zhuǎn)換技術(shù)的最常見拓?fù)渲弧2粌H如此,,相比負(fù)載諧振拓?fù)淙鏛LC轉(zhuǎn)換器,,非對(duì)稱PWM半橋轉(zhuǎn)換器具有一個(gè)輸出電感,,其輸出電流的紋波成分小得可以由一個(gè)適當(dāng)?shù)妮敵鲭娙輥硖幚?。由于易于分析和設(shè)計(jì),且具有一個(gè)輸出電感,,所以非對(duì)稱PWM半橋轉(zhuǎn)換器通常用于具有高輸出電流和低輸出電壓的應(yīng)用如PC電源和服務(wù)器電源,。為了更好地處理輸出電流,往往在次級(jí)端使用一個(gè)同步整流器,,因?yàn)閭鲗?dǎo)損耗可作為替代二極管損耗的電阻損耗,。相比LLC轉(zhuǎn)換器,實(shí)現(xiàn)用于非對(duì)稱半橋轉(zhuǎn)換器的同步整流器驅(qū)動(dòng)器更為便利,,此外,,電流倍增器是增加主變壓器在高輸出電流下的利用率的常用方案,。
本文描述帶有電流倍增器和同步整流器的非對(duì)稱PWM半橋轉(zhuǎn)換器的普遍特性,并列舉一個(gè)示例及某些實(shí)驗(yàn)結(jié)果,,該示例使用針對(duì)非對(duì)稱受控拓?fù)涞?a class="innerlink" href="http://wldgj.com/tags/功率開關(guān)" title="功率開關(guān)" target="_blank">功率開關(guān),。
帶有電流倍增器和同步整流器的非對(duì)稱PWM半橋轉(zhuǎn)換器的優(yōu)勢
對(duì)于具有低輸出電壓和高輸出電流的應(yīng)用,,廣泛使用電流倍增器。圖1所示為處于次級(jí)端帶有電流倍增器的非對(duì)稱PWM半橋轉(zhuǎn)換器,,次級(jí)線圈是單端配置而輸出電感分為兩個(gè)較小的電感,。為了提高總體效率,使用具有低RDS(ON)的MOSFET構(gòu)成的同步整流器 (Synchronous Rectifier, SR),。與傳統(tǒng)的中心抽頭式(center-tapped)配置相比,,電流倍增器具有多項(xiàng)優(yōu)勢:首先,,勵(lì)磁電流的DC成分小于或等于中心抽頭式配置的 DC 成分,因而變壓器可以使用較小的磁芯,。當(dāng)每個(gè)輸出電感承擔(dān)負(fù)載電流的一半時(shí),,勵(lì)磁電流與中心抽頭式配置相似。如果輸出電感承擔(dān)的負(fù)載電流不均衡,,勵(lì)磁電流就會(huì)減少,。其次,次級(jí)線圈電流的平方根值(root-mean-square, RMS)小于中心抽頭式配置,,這是因?yàn)閹缀跻话氲呢?fù)載電流流經(jīng)各個(gè)輸出電感,。鑒于此,次級(jí)線圈的電流密度低,,可以使用相同的磁芯和相同的線材規(guī)格,。第三,其繞組本身較中心抽頭式方案簡單,,尤其值得關(guān)注的是由于變壓器線引腳數(shù)量的限制,,可用于多輸出應(yīng)用。第四,,可以更便利,、有效地從輸出電感獲取SR的柵極信號(hào),由于初級(jí)線圈匝數(shù)足夠多而變壓器次級(jí)線圈匝數(shù)只有少許,,可從輸出電感輕易獲取適當(dāng)?shù)臇艠O電壓,,如10V和20V之間的電壓。此外,,單獨(dú)的輸出電感將會(huì)減輕更大磁芯的成本負(fù)擔(dān),。鑒于上述數(shù)項(xiàng)優(yōu)勢,電流倍增器是高輸出電流應(yīng)用的最常用拓?fù)渲弧?/p>
圖1.使用電流倍增器的非對(duì)稱PWM半橋轉(zhuǎn)換器
建議的轉(zhuǎn)換器運(yùn)作原理
如圖2所示,,從供電模式2開始,,由于S1開啟,,Vin-VCb施加到變壓器的初級(jí)端,,勵(lì)磁電流im以斜率(Vin-VCb)/Lm.增加,,由于SR2關(guān)斷,LO1的電流斜率就由(Vin-VCb)/n減去輸出電壓決定,。另一方面,,LO2的電流以斜率–VO/LO2減小,這是流經(jīng)SR1的續(xù)流(free-wheeling),。當(dāng)兩個(gè)輸出電感分享負(fù)載電流時(shí),,SR1承擔(dān)全部負(fù)載電流。變壓器的次級(jí)繞組僅處理iLO1,,因而iLO1/n是反射到變壓器初級(jí)端的電流,,它在勵(lì)磁電流上疊加,構(gòu)成初級(jí)電流ipri,。在實(shí)際上,,由于漏電感的現(xiàn)象,所以vT2較圖2所示的數(shù)值稍低,,但我們在這一章段中將忽略這一情況,,從而簡化分析。
圖2.建議轉(zhuǎn)換器的運(yùn)作分析
當(dāng)S1關(guān)斷,,則開始模式3,,由于S2的輸出電容被放電,故vT1也減小,,最終,,當(dāng)S2輸出電容電壓等于VCb. 時(shí),它變?yōu)榱?。同時(shí),,由于SR2的反向偏置電壓消除,因此它的體二極管開啟導(dǎo)通,。然后,,兩個(gè)SR在這個(gè)模式中一起導(dǎo)通。S2的體二極管在S2的輸出電容和S1的輸出電容完全放電后導(dǎo)通,,由于兩個(gè)SR均導(dǎo)通,,iLO1和iLO2均為續(xù)流,斜率分別為–VO/LO1和–VO/LO2, 而vT1和vT2均為零,。由于VCb僅僅施加在漏電感上,,它引起初級(jí)電流的極性快速變化。在S2的體二極管導(dǎo)通后S2開啟,, 從而實(shí)現(xiàn)S2的ZVS運(yùn)作,,這個(gè)模式的持續(xù)時(shí)間為
模式4是另一個(gè)充電模式,在各個(gè)SR之間的換向結(jié)束時(shí)開始,在變壓器初級(jí)端施加的電壓為–VCb,,因而勵(lì)磁電流以斜率–VCb/Lm減少,,iLO2的斜率為(VCb/n-VO)/LO2。其它的電感電流是通過SR2的續(xù)流,??蓮膱D2看出,由于異相(out-of-phase)作用,,每個(gè)輸出電感的大紋波電流得以消除,。因而,相比中心抽頭式或橋式整流配置,,它可以在電流倍增器配置中使用兩個(gè)較小的電感,。
當(dāng)S2關(guān)斷,模式1作為另一個(gè)重建模式而開始,,模式1的運(yùn)作原理幾乎與模式3相同,,只有ZVS狀況例外。在模式1中,,當(dāng)S1的輸出電容電壓等于Vin-VCb的瞬間,,vT1成為零。在這個(gè)瞬間之前,,輸出電感LO2上的負(fù)載電流反射到變壓器的初級(jí)端,,有助于實(shí)現(xiàn)開關(guān)的ZVS運(yùn)作。與此相反,,存儲(chǔ)在漏電感中的能量僅在這個(gè)瞬間之后對(duì)輸出電容進(jìn)行放電和充電,。因而,S1的ZVS運(yùn)作較S2更為穩(wěn)固,,因?yàn)橥ǔin-VCb高于VCb,,除此之外,可以與模式3相同的方式進(jìn)行分析,,模式1的延續(xù)時(shí)間為
設(shè)計(jì)示例和實(shí)驗(yàn)結(jié)果
在本節(jié)中討論一個(gè)設(shè)計(jì)示例,,目標(biāo)系統(tǒng)是輸出電壓為12V和輸出負(fù)載電流為30A的PC電源,由于輸入通常來自功率因數(shù)校正(PFC)電路,,輸入電壓的范圍并不寬泛,,目標(biāo)規(guī)范如下:
V標(biāo)稱輸入電壓:390 VDC
·輸入電壓范圍:370 VDC~410 VDC
·輸出電壓:12 V
·輸出電流:30 A
·開關(guān)頻率:100 kHz
圖3所示為參考設(shè)計(jì)的完整原理圖,變壓器的電氣特性如表1所示,。
圖3.360W PC電源的設(shè)計(jì)示例(12 V,30 A)
表I.所設(shè)計(jì)變壓器的電氣特性
圖4和圖5所示為轉(zhuǎn)換器在標(biāo)稱輸入和全負(fù)載情況下的實(shí)驗(yàn)波形,。S1的柵極信號(hào),主變壓器的初級(jí)端和次級(jí)端的電壓和初級(jí)端電流如圖4所示,。請(qǐng)留意這些波形與理論分析很好地吻合,,包括ZVS運(yùn)作。輸出電感電流和SR的電流如圖5所示,由于占空比和寄生組件,,輸出電感電流是不均衡的,,這意味著平均勵(lì)磁電流小于中心抽頭式配置(注1)。
圖4.實(shí)驗(yàn)結(jié)果I
圖5.實(shí)驗(yàn)結(jié)果II
圖6所示為不同負(fù)載情況下的ZVS運(yùn)作,,顯示了低側(cè)開關(guān)的漏極電壓和柵極信號(hào),轉(zhuǎn)換器在負(fù)載低至30%的情況下仍表現(xiàn)為ZVS運(yùn)作,。
圖6.ZVS運(yùn)作驗(yàn)證,;(a)30% 負(fù)載;(b)20%負(fù)載狀況
轉(zhuǎn)換器的效率如圖7所示,,在額定負(fù)載為20%,、50%和100%的情況下測得的效率分別為93.7%、94.6%和93.1%,,這顯示了邊際性能,,因而使用設(shè)計(jì)優(yōu)良的PFC和DC-DC級(jí)能夠達(dá)到85 PLUS規(guī)范要求。
圖7.測得的效率