引言
生物特征識別技術(shù)是指利用人體固有的生理特征或行為特征來進(jìn)行個(gè)人身份鑒別認(rèn)證的技術(shù),。生物特征識別技術(shù)包括采用人體固有的生理特征(如人臉、指紋,、虹膜,、靜脈)進(jìn)行的身份認(rèn)證技術(shù)和利用后天形成的行為特征(如簽名、筆跡,、聲音,、步態(tài))進(jìn)行的身份認(rèn)證技術(shù)。與傳統(tǒng)的身份鑒定手段相比,,基于生物特征識別的身份鑒定技術(shù)具有如下優(yōu)點(diǎn):(1)不會(huì)遺忘或丟失,;(2)防偽性能好,不易偽造或被盜,;(3)“隨身攜帶”,,隨時(shí)隨地可用。正是由于生物特征身份識別認(rèn)證具有上述優(yōu)點(diǎn),,基于生物特征的身份識別認(rèn)證技術(shù)受到了各國的極大重視,。
生物特征識別技術(shù)及其發(fā)展趨勢
目前,常用的生物特征識別技術(shù)所用的生物特征有基于生理特征的如人臉,、指紋,、虹膜,也有基于行為特征的如筆跡,、聲音等,。下面就這些常見的生物特征識別技術(shù)的特點(diǎn)及其發(fā)展趨勢作一簡單介紹,。
人臉識別
人臉識別作為一種基于生理特征的身份認(rèn)證技術(shù),與目前廣泛應(yīng)用的以密碼,、IC卡為媒介的傳統(tǒng)身份認(rèn)證技術(shù)相比,,具有不易偽造,、不易竊取,、不會(huì)遺忘的特點(diǎn);而人臉識別與指紋,、虹膜,、掌紋識別等生理特征識別技術(shù)相比,具有非侵犯性,、采集方便等特點(diǎn),。因而人臉識別是一種非常自然、友好的生物特征識別認(rèn)證技術(shù),。
人臉識別技術(shù)包括圖像或視頻中進(jìn)行人臉檢測,、從檢測出的人臉中定位眼睛位置、然后提取人臉特征,、最后進(jìn)行人臉比對等一系列相關(guān)的技術(shù),。
最早的人臉識別系統(tǒng)建成于20世紀(jì)60年代,該系統(tǒng)以人臉特征點(diǎn)的間距,、比率等參數(shù)作為特征,,構(gòu)建了一個(gè)半自動(dòng)的人臉識別系統(tǒng)。此時(shí)的人臉識別研究多集中于研究如何提取特征點(diǎn)進(jìn)行人臉識別,,如人臉特征器官(眼角,、嘴角、鼻孔)的相對位置,、大小,、形狀、面積及彼此間的幾何關(guān)系等,。由于這些特征點(diǎn)難以準(zhǔn)確定位,、魯棒性差,因而采用這些方法的人臉識別系統(tǒng)的性能都很低,。
自20世紀(jì)80年代開始,,人臉識別技術(shù)出現(xiàn)了基于面部圖像的方法。與基于特征點(diǎn)的方法相比,,基于面部圖像的方法不是提取人臉特征器官這一高層特征,,而是將人臉作為一個(gè)圖像整體,從圖像中提取反映人臉特性的特征如DCT變換特征,、小波特征,、Gabor特征等等,。基于面部圖像的方法由于利用了更多的底層信息,,以及統(tǒng)計(jì)模式識別方法的引入,,使得這類方法具有非常高的識別率和非常好的魯棒性。由于基于面部圖像的人臉識別算法具有很高性能,,目前已經(jīng)出現(xiàn)了不少推廣人臉識別技術(shù)的廠商,,如國內(nèi)的北京海鑫科金高科技股份有限公司、國外的L1ID等,。
為了評測基于面部圖像的人臉識別算法的性能,。美國ARPA和ARL于1993年至1996年建立了FERET數(shù)據(jù)庫,用于評測當(dāng)時(shí)的人臉識別算法的性能,。共舉行了三次測試FERET94,、FERET95、FERET96,。FERET測試的結(jié)果指出,,光照、姿態(tài)和年齡變化會(huì)嚴(yán)重影響人臉識別的性能,。
FERET的測試結(jié)果也表明了基于面部圖像的方法的缺點(diǎn),。人臉是一個(gè)三維非剛體,具有姿態(tài),、表情等變化,,人臉圖像采集過程中易受到光照、背景,、采集設(shè)備的影響,。這些影響會(huì)降低人臉識別的性能。
為了克服姿態(tài)變化對人臉識別性能的影響,,也為了進(jìn)一步提高人臉識別性能,,20世紀(jì)90年代后期,一些研究者開始采用基于3D的人臉識別算法,。這些算法有的本身就采用三維描述人臉,,有的則用二維圖像建立三維模型,并利用三維模型生成各種光照,、姿態(tài)下的合成圖像,,利用這些合成圖像進(jìn)行人臉識別。
2000年后,,人臉識別算法逐漸成熟,,出現(xiàn)了商用的人臉識別系統(tǒng)。為了評測這些商用系統(tǒng)的性能,也作為FERET測試的延續(xù),,美國有關(guān)機(jī)構(gòu)組織了FRVT2000,、FRVT2002、FRVT2006測試,。測試結(jié)果表明,,人臉識別錯(cuò)誤率在FRVT2006上下降了至少一個(gè)數(shù)量級,這種性能的提升在基于圖像的人臉識別算法和基于三維的人臉識別算法上都得到體現(xiàn),。此外,,在可控環(huán)境下,虹膜,、靜態(tài)人臉和三維人臉識別技術(shù)的性能是相當(dāng)?shù)?。此外,,F(xiàn)RVT2006還展現(xiàn)了不同光照條件下人臉識別性能的顯著提高,,最后,F(xiàn)RVT2006表明人臉自動(dòng)識別的性能優(yōu)于人,。值得一提的是,,清華大學(xué)電子工程系作為國內(nèi)唯一參加FRVT2006的評測的學(xué)術(shù)機(jī)構(gòu),其人臉自動(dòng)識別性能優(yōu)于人類,。
FRVT2006為人臉識別后續(xù)的研究指明了方向,,人臉識別中光照、年齡變化依然對人臉識別性能有很大影響,,二維人臉識別的性能不比三維人臉識別差,。
指紋識別
指紋識別技術(shù)是指通過比較不同人指紋中的特征點(diǎn)不同來區(qū)分不同人的身份。指紋識別技術(shù)通常由三個(gè)部分組成:對指紋圖像進(jìn)行預(yù)處理,;提取特征值,,并形成特征值模板;指紋特征值比對,。
指紋圖像預(yù)處理的目的是為了減少噪聲干擾的影響,,以便有效提取指紋特征值。常用的預(yù)處理方法有圖像增強(qiáng),、圖像平滑,、二值化、圖像細(xì)化等,。
特征提取的目的就是從預(yù)處理后的指紋圖像中,,提取出能夠表達(dá)該指紋圖像與眾不同的特征點(diǎn)的過程。最初特征提取是基于圖像的,,從圖像整體中提取出特征進(jìn)行比較,,但該方法的精度和性能較低。現(xiàn)在一般采用基于特征點(diǎn)的方法,從圖像中提取反應(yīng)指紋特性的全局特征(如紋形,、模式區(qū),、核心區(qū)、三角點(diǎn),、紋數(shù)等)和局部特征(如終結(jié)點(diǎn),、分叉點(diǎn)、分歧點(diǎn),、孤立點(diǎn),、環(huán)點(diǎn)等)。得到特征點(diǎn)后就可以對特征點(diǎn)進(jìn)行編碼形成特征值模板,。
指紋特征值比對就是把當(dāng)前獲得的指紋特征值與存儲(chǔ)的指紋特征值模板進(jìn)行匹配,,并給出相似度的過程。
虹膜識別
虹膜相對而言是一個(gè)較新的生物特征,。1983年,,F(xiàn)lom與Safir申請了虹膜識別專利保護(hù),使得虹膜識別方面的研究很少,。1993年,,Daugman發(fā)表了關(guān)于虹膜自動(dòng)識別算法的開創(chuàng)性工作,奠定了世界上首個(gè)商業(yè)虹膜自動(dòng)識別系統(tǒng)的基礎(chǔ),。隨著Flom和Safir專利在2005年的失效和CASIA及ICE2005中虹膜數(shù)據(jù)集的提供,,虹膜識別算法的研究越來越蓬勃。ICE2006首次對虹膜識別算法性能進(jìn)行了測試,。
虹膜識別中需要解決如下兩個(gè)難點(diǎn)問題:一是虹膜圖像的獲取,,二是實(shí)現(xiàn)高性能的虹膜識別算法。
生物特征識別產(chǎn)品的發(fā)展趨勢
生物特征識別產(chǎn)品逐步從單一PC處理,,轉(zhuǎn)變?yōu)榉植际接?jì)算,。用獨(dú)立的前端獨(dú)立設(shè)備來完成生物特征的采集、預(yù)處理,、特征提取和比對,,而用中心PC或服務(wù)器完成與業(yè)務(wù)相關(guān)的處理。闡述這種方式較之傳統(tǒng)方式的優(yōu)點(diǎn)~ 由于前端采用嵌入式設(shè)備,,因而自然提出了對數(shù)字信號處理器的要求,。
生物特征識別技術(shù)對數(shù)字信號處理的挑戰(zhàn)
為了獲得更好的性能,研究者們從算法上,、應(yīng)用廠商從應(yīng)用上對生物特征識別技術(shù)進(jìn)行改進(jìn),。這些算法根據(jù)不同生物特征的特點(diǎn),采用新的數(shù)學(xué)模型,,有效解決了現(xiàn)有算法的不足,,使得生物特征識別技術(shù)性能上了一個(gè)新臺階,。新的數(shù)學(xué)模型,較之以往的模型更為復(fù)雜,,計(jì)算量更大,。為了能夠有效的在數(shù)字信號處理器上實(shí)現(xiàn)這些算法,要求數(shù)字信號處理器有更強(qiáng)的處理能力,。我們下面結(jié)合人臉識別具體說生物特征識別技術(shù)對數(shù)字信號處理的挑戰(zhàn),。
傳統(tǒng)數(shù)字信號處理中核心算法之一就是傅立葉變換,該變換在通信,、圖像傳輸,、雷達(dá)、聲納中都有很大的作用,。但是,,在相當(dāng)長的時(shí)間里,由于傅立葉變換的計(jì)算量太大,,即使采用計(jì)算機(jī)也很難對問題進(jìn)行實(shí)時(shí)處理,,所以并沒有得到真正的運(yùn)用。直到傅立葉變換的快速算法即快速傅立葉變換發(fā)現(xiàn)后,,傅立葉變換的運(yùn)算量大大縮短,,從而使傅立葉變換在實(shí)際中得到了廣泛的應(yīng)用,,也使得在數(shù)字信號處理器上實(shí)現(xiàn)傅立葉變換成為了可能,。
盡管傅立葉變換對數(shù)學(xué)、物理產(chǎn)生了深遠(yuǎn)的影響,,但對于大多數(shù)應(yīng)用例如人臉識別而言是遠(yuǎn)遠(yuǎn)不夠的,。比如說人臉圖像中,眼睛所含有的信息較其他部分對識別而言非常重要,,需要找到一種方法,,提取出眼睛這部分重要的信息,并盡量降低不重要的信息對識別的影響,。這就需要對人臉圖像進(jìn)行局部分析,。然而,傅立葉變換無法進(jìn)行局部分析,,使得傅里葉變換在人臉識別中的應(yīng)用很有限,。
為了提高性能,研究者將數(shù)字信號處理領(lǐng)域中新的復(fù)雜的變換如Gabor變換,、小波變換引入人臉識別中,,采用這些變換進(jìn)行局部分析,提取出對人臉識別有用的特征,,從而大大提高了人臉識別的性能,。然而,Gabor變換和小波變換的計(jì)算量較之傅立葉變換而言非常大,為了在嵌入式設(shè)備上實(shí)現(xiàn)人臉識別系統(tǒng),,需要高主頻,、高性能的數(shù)字信號處理器來實(shí)現(xiàn),這就對數(shù)字信號處理器的設(shè)計(jì)提出了一個(gè)很大的挑戰(zhàn),。
從應(yīng)用角度而言,,為了良好的交互性,在實(shí)現(xiàn)人臉識別系統(tǒng)時(shí),,要求實(shí)時(shí)實(shí)現(xiàn)從視頻采集到人臉識別全過程完成(或者至少在1~2秒鐘內(nèi)實(shí)現(xiàn)),,否則,給人的感覺就不自然,、不流暢,。因而,從良好的交互性角度而言,,在嵌入式設(shè)備上實(shí)現(xiàn)人臉識別系統(tǒng)需要高性能的數(shù)字處理器,。
ADI公司的Blackfin系列處理器是一類專為滿足當(dāng)今嵌入式音頻、視頻和通信應(yīng)用的計(jì)算要求和功耗約束條件而設(shè)計(jì)的新型 16~32 位嵌入式處理器,。Blackfin 處理器基于由 ADI 和 Intel 公司聯(lián)合開發(fā)的微信號架構(gòu)(MSA),,它將一個(gè) 32 位 RISC 型指令集和雙 16 位乘法累加(MAC)信號處理功能與通用型微控制器所具有的易用性組合在了一起。 這種處理特征的組合使得 Blackfin 處理器能夠在信號處理和控制處理應(yīng)用中均發(fā)揮上佳的作用—在許多場合中免除了增設(shè)單獨(dú)的異類處理器的需要,。該能力極大地簡化了硬件和軟件設(shè)計(jì)實(shí)現(xiàn)任務(wù),。
目前,Blackfin 處理器在單內(nèi)核產(chǎn)品中可提供高達(dá) 756MHz 的性能,。Blackfin 處理器系列中的新型對稱多處理器成員在相同的頻率條件下實(shí)現(xiàn)了性能的翻番,。Blackfin 處理器系列還提供了低至 0.8V 的業(yè)界領(lǐng)先功耗性能。對于滿足當(dāng)今及未來的信號處理應(yīng)用(包括寬帶無線,、具有音頻/視頻功能的因特網(wǎng)工具和移動(dòng)通信)而言,,這種高性能與低功耗的組合是必不可少的。
Blackfin處理器具有如下特點(diǎn):
高性能處理器內(nèi)核,。Blackfin 處理器架構(gòu)基于一個(gè) 10 級 RISC MCU/DSP 流水線和一個(gè)專為實(shí)現(xiàn)最佳代碼密度而設(shè)計(jì)的混合 16/32 位指令集架構(gòu),,該架構(gòu)很適合于全信號處理/分析能力。這種架構(gòu),,使得人臉識別中的復(fù)雜的數(shù)字信號處理運(yùn)算在Blackfin上很容易實(shí)現(xiàn),。
高帶寬DMA能力。人臉識別中需要對圖像塊進(jìn)行操作,,這就涉及到內(nèi)存數(shù)據(jù)存取,。采用Blackfin的DMA控制器可以自動(dòng)數(shù)據(jù)傳輸,所需的處理器內(nèi)核開銷極少,。這樣可以將寶貴的處理器的運(yùn)算能力用于人臉識別的計(jì)算,,減小數(shù)據(jù)存取對性能的影響,。
. 視頻指令。人臉識別中最常進(jìn)行的操作就是對像素值進(jìn)行處理,,Blackfin處理器具有對8位數(shù)據(jù)以及許多像素處理算法所常用的字長的固有支持,,大大提高了人臉識別的處理速度?!?/p>
. 分層存儲(chǔ)器,。Blackfin具L1 Cache和L2 Cache兩級Cache,由于Cache較之外部存儲(chǔ)器具有更快的存取速度,,因而,,在人臉識別時(shí),可以把運(yùn)算密集的代碼放在L1 Cache或L2 Cache中,,這樣可以有效提高處理速度,。
上述Blackfin處理器特點(diǎn)表明,Blackfin系列處理器非常適合處理需要高性能運(yùn)算能力和高數(shù)據(jù)吞吐量的生物特征識別技術(shù),。
目前,,Hisign已經(jīng)將人臉識別的算法移植到ADI的Blackfin上,性能正在優(yōu)化中,。請繼續(xù)關(guān)注,。
結(jié)語
本文討論了生物特征識別技術(shù)的發(fā)展趨勢,結(jié)合人臉識別分析了生物特征識別技術(shù)需要高性能的數(shù)字信號處理器的原因,,并簡單介紹了Blackfin處理器的特點(diǎn),,指出正是由于Blackfin處理器的這些特點(diǎn),使得該處理器非常適合作為嵌入式系統(tǒng)中的計(jì)算核心,,以便將人臉識別等生物特征識別技術(shù)移植到嵌入式系統(tǒng),。