《電子技術應用》
您所在的位置:首頁 > 模擬設計 > 設計應用 > 詳解音頻協(xié)議和標準
詳解音頻協(xié)議和標準
摘要: 本文將討論與音頻行業(yè)相關的各種標準和協(xié)議,,同時也會探究不同平臺的音頻系統(tǒng)結(jié)構(gòu)以及各種音頻算法和放大器。
Abstract:
Key words :

中心議題:

  • 音頻協(xié)議和標準解析
  • 不同標準對應的系統(tǒng)接口
  • 音頻放大器詳解

解決方案:


過去幾年里,,音頻技術取得了巨大進步,,特別是在家庭影院和汽車音響市場,。汽車中的傳統(tǒng)四揚聲器立體聲系統(tǒng)正逐漸被多聲道多揚聲器音頻系統(tǒng)所取代。在印度,,帶雙揚聲器立體聲系統(tǒng)的電視機現(xiàn)已被帶5.1多聲道的家庭影院系統(tǒng)所取代,。

當今的音頻設計挑戰(zhàn)在于如何模擬實際的聲音并通過各種音頻設備進行傳送。聲音可以來自任何方向,,實際上,,我們的大腦能夠計算并感知聲音的來源。例如,,當戰(zhàn)斗機從一點飛到另一點時,,它所產(chǎn)生的聲音實際上來自無數(shù)個位置點。但是,,我們不可能用無數(shù)個揚聲器來再現(xiàn)這種音頻體驗,。

利用多聲道、多揚聲器系統(tǒng)和先進的音頻算法,,音頻系統(tǒng)能夠惟妙惟肖地模擬真實聲音,。這些復雜的音頻系統(tǒng)使用ASIC或DSP來解碼多聲道編碼音頻,并且運行各種后處理算法,。聲道數(shù)量越多,,意味著存儲器和帶寬要求越高,這就需要使用音頻數(shù)據(jù)壓縮技術來編碼并減少所要存儲的數(shù)據(jù),。這些技術還能用來保持聲音質(zhì)量,。

與數(shù)字音頻一同發(fā)展的還有音頻標準和協(xié)議,其目的是簡化不同設備之間的音頻數(shù)據(jù)傳輸,,例如,,音頻播放器與揚聲器之間、DVD播放器與AVR之間,,而不必將數(shù)據(jù)轉(zhuǎn)換為模擬信號,。

本文將討論與音頻行業(yè)相關的各種標準和協(xié)議,同時也會探究不同平臺的音頻系統(tǒng)結(jié)構(gòu)以及各種音頻算法和放大器,。

標準和協(xié)議

S/PDIF標準——該標準定義了一種串行接口,,用于在DVD/HD-DVD播放器、AVR和功率放大器等各種音頻設備之間傳輸數(shù)字音頻數(shù)據(jù),。當通過模擬鏈路將音頻從DVD播放器傳輸?shù)揭纛l放大器時,,會引入噪聲,該噪聲很難濾除,。不過,,如果用數(shù)字鏈路代替模擬鏈路來傳輸音頻數(shù)據(jù),,問題就會迎刃而解。數(shù)據(jù)不必轉(zhuǎn)換為模擬信號就能在不同設備之間傳輸,,這是S/PDIF的最大優(yōu)勢,。

該標準描述了一種串行、單向,、自備時鐘的接口,,可互連那些采用線性PCM編碼音頻采樣的消費和專業(yè)應用數(shù)字音頻設備。它是一種單線,、單信號接口,,利用雙相標記編碼進行數(shù)據(jù)傳輸,時鐘則嵌入數(shù)據(jù)中,,在接收端予以恢復(見圖1),。此外,數(shù)據(jù)與極性無關,,因此更易于處理,。S/PDIF是從專業(yè)音頻所用的AES/EBU標準發(fā)展而來。二者在協(xié)議層上一致,,但從XLR到電氣RCA插孔或光學TOSLINK的物理連接器發(fā)生了改變,。本質(zhì)上,S/PDIF是AES/EBU格式的消費型版本,。S/PDIF接口規(guī)范主要由硬件和軟件組成,。軟件通常涉及S/PDIF幀格式,硬件則涉及設備間數(shù)據(jù)傳輸所使用的物理連接媒介,。用于物理媒介的各種接口包括:晶體管與晶體管邏輯,、同軸電纜(以RCA插頭連接的75Ω電纜)和TOSLINK(一種光纖連接)。


圖1S/PDIF雙相標記編碼流

S/PDIF協(xié)議——如上文所述,,它是一種單線串行接口,,時鐘嵌入數(shù)據(jù)之中。傳輸?shù)臄?shù)據(jù)采用雙相標記編碼,。時鐘和幀同步信號在接收器端與雙相解碼數(shù)據(jù)流一同恢復,。數(shù)據(jù)流中的每個數(shù)據(jù)位都有一個時隙。時隙以一個躍遷開始,,并以一個躍遷結(jié)束,。如果傳輸?shù)臄?shù)據(jù)位是“1”,則時隙中間還會增加一個躍遷,。數(shù)據(jù)位“0”則不需要額外躍遷,,躍遷之間的最短間隔稱為單位間隔(UI)。

S/PDIF幀格式——首先驅(qū)動數(shù)據(jù)的最低有效位。每個幀有兩個子幀,,分別是32個時隙,共64個時隙(見圖2),。子幀以一個前導碼開始,,后面跟隨24位數(shù)據(jù),最后以攜帶用戶數(shù)據(jù)和通道狀態(tài)等信息的4位結(jié)束,。子幀的前4個時隙稱為前導碼,,用于指示子幀和塊的開始。前導碼有三個,,每一前導碼均包含一個或兩個持續(xù)時間為3UI的脈沖,,從而打破雙相編碼規(guī)則。這意味著,,該模式不可能存在于數(shù)據(jù)流中的其他地方,。每個子幀都以4位前導碼開始。塊的開始用前導碼“Z”和子幀通道的開始“A”表示,。前導碼“X”表示通道“A”子幀的開始(不同于塊的開始),,前導碼“Y”表示通道“B”子幀的開始。


圖2S/PDIF子幀,、幀和塊格式



I2S總線——在當今的音頻系統(tǒng)中,,數(shù)字音頻數(shù)據(jù)在系統(tǒng)內(nèi)部的各種器件之間傳輸,例如編解碼器,、DSP,、數(shù)字IO接口、ADC,、DAC和數(shù)字濾波器之間,。因此,為了增強靈活性,,必須有一個標準的協(xié)議和通信結(jié)構(gòu),。專為數(shù)字音頻而開發(fā)的I2S總線規(guī)范現(xiàn)已被許多IC廠商采用,它是一種簡單的三線同步協(xié)議,,包括如下信號:串行位時鐘(SCK),、左右時鐘或字選擇(WS)以及串行數(shù)據(jù)。WS線表示正在進行傳輸?shù)穆暤?。當WS為邏輯高(HI)電平時,,右聲道進行傳輸;當WS為邏輯低(LO)電平時,,左聲道進行傳輸,。發(fā)送器以二進制發(fā)送數(shù)據(jù),首先補足MSB。幾乎所有DSP的串行端口都將I2S作為串行端口模式之一,。音頻編解碼器也支持這種模式,。

采樣速率轉(zhuǎn)換器(SRC)——這是音頻系統(tǒng)的一個重要組成部分。采樣速率轉(zhuǎn)換既可以通過軟件實現(xiàn),,也可以通過一些處理器的片內(nèi)硬件來支持(見圖3),。它主要用于將數(shù)據(jù)從一個采用特定采樣速率的時鐘域轉(zhuǎn)換到另一個采用相同或不同采樣速率的時鐘域。


圖3采樣速率轉(zhuǎn)換過程的四個不同階段

音頻可以采用不同采樣速率進行編碼,,其他任務由編解碼器完成,。某些情況下需要改變編解碼器的主時鐘,以支持特定采樣速率,。從采用某一采樣速率的音頻轉(zhuǎn)換為采用不同采樣速率的音頻時,,即時改變主時鐘并不是一件容易的事,有時甚至不可能完成,,因為需要更改電路板上的硬件,。因此,采樣速率轉(zhuǎn)換一般在將數(shù)據(jù)驅(qū)動到編解碼器之前執(zhí)行,。這樣,,編解碼器的采樣速率不需要改變,可以保持恒定,。串行端口以采樣頻率1發(fā)送音頻數(shù)據(jù)到另一端的SRC和編解碼器,,然后以采樣頻率2從SRC讀取音頻數(shù)據(jù)。

SRC分為兩種類型:同步SRC和異步SRC,。與同步SRC連接的輸出器件為“從機”,,與異步SRC連接的器件為“主機”。“主機”是指驅(qū)動SCK和幀同步信號的器件,。

SRC利用輸出采樣速率極高的插值濾波器和零階保持器(ZOH)將離散時間信號轉(zhuǎn)換為連續(xù)時間信號,。插值值被饋送至ZOH,并以Fsout的輸出采樣頻率進行異步采樣,。
音頻系統(tǒng)

大多數(shù)手持式音頻設備支持雙聲道,,并能解碼MP3、Ogg,、WMA媒體格式,。這些設備大多依賴電池供電。還有許多手機,,其中一些稱為“音樂手機”,,也屬于此類設備。另一方面,,家庭影院系統(tǒng)支持多揚聲器,、多聲道音頻,,例如,Dolby,、DTS和各種其他音頻后處理算法(THX,、ART、Neo6等),。

便攜式音頻系統(tǒng)——有些手持式音頻系統(tǒng)采用ASIC,,有些則采用DSP。MP3,、Ogg和其他媒體文件等音頻內(nèi)容通常存儲在高密度存儲設備中,如NAND閃存,、安全數(shù)字(SD)卡,、多媒體卡(MMC)和安全數(shù)字高容量卡(SDHC)等。

圖4顯示了與ASIC/DSP的主要系統(tǒng)接口,。SD和MMC還支持串行SPI模式,,DSP和各種微控制器/微處理器通常提供此種模式。某些處理器片內(nèi)支持這些標準,。利用處理器的其他資源/接口,,如并行端口或異步存儲器接口等,也可以通過軟件實現(xiàn)這些協(xié)議,。當然,,軟件實現(xiàn)方法會增加開銷。對于運行操作系統(tǒng)(OS)或內(nèi)核的系統(tǒng),,必須使這些接口和驅(qū)動程序與OS兼容,,而不應依賴中斷服務等。OS環(huán)境下可能會引起不可預測的延遲,,影響接口時序規(guī)格,,使得接口不可靠,有時甚至無法工作,。為了確保OS兼容,,可能需要使用額外的硬件膠合邏輯。


圖4手持式音頻系統(tǒng)框圖

例如,,一個設計示例(見圖5)在處理器的外部存儲器接口上實現(xiàn)了SD2.0規(guī)范,。數(shù)據(jù)總線不僅用于數(shù)據(jù)傳輸,而且用于與SD卡交換命令和響應,。在SD卡的4位模式下,,數(shù)據(jù)總線的D0至D3信號連接到SD卡的數(shù)據(jù)線(DAT0至DAT3)。處理器數(shù)據(jù)總線的D4用于與SD卡進行命令和響應通信,。由于命令字必須通過CMD信號串行發(fā)送,,因此一系列8位字形成內(nèi)部存儲器中的幀,,使得各個字的D4依次具有命令字的一位。這種數(shù)據(jù)重排是通過函數(shù)調(diào)用在軟件中完成,。類似地,,軟件對接收的狀態(tài)信息和來往SD卡的實際數(shù)據(jù)執(zhí)行數(shù)據(jù)重排。SD卡時鐘信號自ARE/(讀取選通)和AWE/(寫入選通)信號獲得,。ARE/和AWE/連接到一個具有開集輸出的緩沖器的輸入端,。AMS3/(異步存儲器片選選通)連接到此緩沖器的輸出使能引腳。此緩沖器的輸出執(zhí)行“線與”處理,,所產(chǎn)生的信號作為時鐘提供給SD卡,。數(shù)據(jù)線也通過一個雙向緩沖器進行緩沖。

AMS3/驅(qū)動緩沖器的輸出使能引腳,。要求對緩沖器進行隔離,,以便其他異步存儲設備也能共享數(shù)據(jù)總線。D5驅(qū)動雙向緩沖器的DIR(方向控制)引腳,。緩沖器兩端均需要上拉電阻,。BF-54x等其他一些Blackfin產(chǎn)品提供片內(nèi)SD支持。



圖5BlackfinBF-527處理器異步存儲器接口和并行外設接口上的SD設計

文件系統(tǒng)——需要實現(xiàn)FAT16/32來管理存儲卡上的音頻文件和文件夾,。這些代碼與音頻解碼器代碼集成,。解碼后的音頻數(shù)據(jù)接著被送至數(shù)模轉(zhuǎn)換器(DAC),經(jīng)過放大后再被送至音頻立體聲連接器,。與DAC相連的接口通常是串行I2S接口,。DAC配置通過串行外設接口(SPI)或I2C兼容外設來完成。運行時,,可以通過此控制接口改變各種DAC參數(shù),,如采樣率、增益/音量控制等,。

處理器或FPGA從SPI引導ROM/閃存器件進行引導加載,。應用程序下載至其內(nèi)部存儲器后執(zhí)行。處理器利用其內(nèi)部SRAM為IO數(shù)據(jù)緩沖器存儲編碼音頻幀(從存儲介質(zhì)讀?。┖徒獯a音頻數(shù)據(jù)(驅(qū)動至DAC),。

AVR/家庭影院系統(tǒng)——家庭影院音樂系統(tǒng)通常是多聲道音頻系統(tǒng)(見圖6)。Dolby5.1和DTS5.1是主流多聲道音頻系統(tǒng),。DVD播放器通過光纖或同軸電纜S/PDIF接口發(fā)送編碼音頻數(shù)據(jù)流,。系統(tǒng)利用S/PDIF接收器芯片解碼雙相標記編碼數(shù)據(jù),并提供與處理器相連的串行幀接口,。S/PDIF接收芯片通常向處理器提供I2S格式的數(shù)據(jù)流,。某些處理器片內(nèi)集成S/PDIF接收器,無須使用外部接收器芯片,。處理器運行自動檢測算法來確定數(shù)據(jù)流類型,,如Dolby,、DTS或非編碼PCM音頻流等。
 


圖6多聲道音頻系統(tǒng)框圖

此算法在后臺持續(xù)運行,。自動檢測流程基于IEC61937非線性PCM編碼比特流國際標準,。調(diào)用主算法,并將主音頻解碼器算法所需的各種參數(shù)正確傳遞給函數(shù),。解碼后的音頻數(shù)據(jù)被復制到已分配的輸出緩沖器中,。串行端口用于將此解碼音頻數(shù)據(jù)以I2S格式驅(qū)動至DAC,然后將模擬信號饋送至功率放大器,,最后再饋送至揚聲器,。
音頻算法

音頻算法可以分為兩類:主解碼器算法和后處理算法。主解碼器算法包括Dolby,、DTS5.1,、DTS6.1、DTS96/24,、AAC等,。后解碼或后處理算法包括DolbyProLogic,、DolbyProLogicII,、DTSNeo6、SurroundEX,、Dolby耳機,、Dolby虛擬揚聲器、THX,、原始環(huán)繞聲,、DynamicEQ、Delay等,。必須使用高性能信號處理器,,而且能執(zhí)行房間均衡等額外功能。

音頻放大器

放大器可以分為如下幾類:A類,、B類,、AB類和C類。放大器的類別基本上由晶體管放大器的工作點或靜態(tài)點決定,。此點位于共發(fā)射極配置中晶體管輸出特性的直流負載線上,。靜態(tài)點表示相對于特定基極電流“IB”的特定集電極電流“IC”?;鶚O電流“IB”取決于晶體管的偏置,,集電極電流“IC”是直流電流增益“hfe”與基極電流“IB”的乘積。A類放大器的靜態(tài)點幾乎位于負載線有效區(qū)間的中點,,對于任何給定的輸入信號變化,,晶體管總是在有效區(qū)間工作,,忠實放大輸入信號,而不會引起任何中斷或失真,。此類放大器用于小信號放大,,然后該信號即可驅(qū)動功率放大器。由于晶體管始終導通,,因此會消耗大量功率,,功率效率較低。這使得A類放大器不適合用作功率放大器,。為了提高效率,,晶體管必須關閉一定的時間,為此需要降低直流負載線上的靜態(tài)點,,使它偏向截止區(qū)間,。這樣就得到其他類型的放大器,如B類,、AB類和C類,。采用推挽配置的B類放大器是首選功率放大器。它以推挽方式使用兩個晶體管,,各晶體管導通180°,。

但在交越時,存在一個二者均不導通的區(qū)間,,這會導致交越失真,。C類放大器的功率效率可以達到80%,但由于晶體管的導通比例不足輸入信號的50%,,因此輸出失真較高,。在有效區(qū)間使用晶體管還要求利用散熱器來保護晶體管,而這正是D類放大器技術優(yōu)于其他類型的地方,。

圖7為一個D類放大器系統(tǒng),。有時將這種放大器稱為數(shù)字放大器,但事實并非如此,。其工作原理仍然與其他類型放大器相同,,但D類放大器的輸入信號為PWM(脈沖寬度調(diào)制)信號。由于數(shù)字輸入在邏輯高電平和邏輯低電平之間來回切換,,因此晶體管工作在飽和區(qū)間或截止區(qū)間,,但決不會工作在有效區(qū)間,因此功耗始終最低,。這使得功率效率大幅提高,,但同時也會引起較高的總諧波失真(THD)。


圖7模擬域中的D類放大器系統(tǒng)框圖

為了解調(diào)PWM并重建原始模擬波形,,需要使用由LC(電感+電容)構(gòu)成的高質(zhì)量低通濾波器,。由于大多數(shù)音頻系統(tǒng)使用DSP,,因此D類放大器對音頻系統(tǒng)設計很有利。音頻信號可以由DSP本身調(diào)制為PWM,,然后直接饋送至D類放大器的輸入端,,而無須使用音頻DAC或編解碼器。因此,,除了提高放大器功率效率以外,,它還能通過消除編解碼器/DAC來降低系統(tǒng)成本。對于D類放大器設計而言,,低通重建濾波器是確保良好THD指標的最重要因素,。

音頻系統(tǒng)設計近年來發(fā)展迅猛,特別是在家庭娛樂和汽車音響領域,。各種標準,、編碼技術和強大的處理器已使得多聲道高清音頻成為現(xiàn)實。音頻系統(tǒng)設計人員仍在攻克各種難題,,例如,,保持高功率效率、實現(xiàn)更低的THD和再現(xiàn)高質(zhì)量聲音等,。
 

此內(nèi)容為AET網(wǎng)站原創(chuàng),,未經(jīng)授權禁止轉(zhuǎn)載。