《電子技術(shù)應(yīng)用》
您所在的位置:首頁 > 電源技術(shù) > 設(shè)計應(yīng)用 > 新型高頻開關(guān)充電電源研究
新型高頻開關(guān)充電電源研究
趙異波,何湘寧
摘要: 研究了適用于變電站直流系統(tǒng)的新型高頻開關(guān)充電電源,,闡述了針對變電站直流系統(tǒng)的充電電源主電路和控制系統(tǒng)的設(shè)計原則,,并給出了設(shè)計方案。最后,,對逆變控制電路進(jìn)行了詳細(xì)的討論,。
Abstract:
Key words :

1引言

充電電源是直流電源系統(tǒng)的一個重要組成部分。目前,,在國內(nèi)市場上應(yīng)用的充電電源主要有磁飽和充電機(jī),、晶閘管整流器和高頻開關(guān)充電電源等三類,,其中前二者技術(shù)成熟,推廣應(yīng)用的時間已久,,使用面也很廣,。但由于受控制技術(shù)和元器件特性的限制,仍存在許多不足之處,,如體積龐大,、笨重、效率低,、可靠性差,、系統(tǒng)紋波電壓大、不便于計算機(jī)監(jiān)控等,。

高頻開關(guān)技術(shù)是采用高頻功率半導(dǎo)體器件和脈寬調(diào)制(PWM)技術(shù)的新型功率變換技術(shù),。開關(guān)電源的逆變單元工作在高頻開關(guān)狀態(tài)。由于工作頻率高,,電路中濾波電感及電容的體積可大大縮?。煌瑫r,,高頻變壓器取代了工頻變壓器,,則變壓器的體積減小、重量降低,;另外,由于開關(guān)管高頻工作,,功率損耗小,因而開關(guān)電源效率高,。開關(guān)管一般采用PWM控制方式,,穩(wěn)壓穩(wěn)流特性較佳。將高頻開關(guān)技術(shù)應(yīng)用于充電電源,,不但有利于充電電源的小型化和高效化,,而且易于產(chǎn)生極性相反的高頻脈沖電流,從而實現(xiàn)蓄電池脈沖快速充電,。本文運用高頻開關(guān)技術(shù),,設(shè)計了針對變電站直流系統(tǒng)的新型高頻開關(guān)充電電源。 2高頻開關(guān)充電電源主電路設(shè)計

高頻開關(guān)充電電源的主電路主要由輸入整流,、輸入濾波,、高頻逆變、輸出整流,、輸出濾波等環(huán)節(jié)構(gòu)成,。按照高頻交流信號與輸出直流信號間的耦合方式不同,可將主電路中的直流變換器(DC/DC)分為隔離型和非隔離型兩大類,。其中非隔離型DC/DC變換器又分為降壓式(Buck),、升壓式(Boost),、升降壓式(Buckboost、Cuk)等幾種電路結(jié)構(gòu),,隔離型DC/DC變換器又可分為單端正激式(Forward),、單端反激式(Flyback)、推挽式(Pushpull),、半橋式(HalfBridge),、全橋式(Bridge)等電路形式[1]。

2.1主電路選取原則

首先設(shè)定充電設(shè)備的運行方式為設(shè)備與蓄電池組并聯(lián)連接于直流母線上,,正常運行時,,充電設(shè)備承擔(dān)經(jīng)常性負(fù)荷,同時向蓄電池浮充電以補充其自放電的損失,。

根據(jù)開關(guān)電源的結(jié)構(gòu)特征,,結(jié)合蓄電池的使用性能及其充放電特性,并考慮到直流系統(tǒng)運行電壓的要求,,確立了以下高頻開關(guān)充電電源主電路的選取原則:

1)充電電源額定輸出電壓應(yīng)為蓄電池組標(biāo)稱電壓的1.5倍以上,,額定輸出電流應(yīng)大于蓄電池組的額定充放電容量,同時還要滿足直流系統(tǒng)正常運行時控制母線和合閘母線所需功率容量;

圖1半橋式高頻開關(guān)充電電源主電路

(a)充電電路(b)放電電路

圖2高頻開關(guān)充電電源控制系統(tǒng)框圖

2)輸出電流,、電壓在一定范圍內(nèi)連續(xù)可調(diào),,并具有較好的穩(wěn)流、穩(wěn)壓特性;

3)使用高頻變壓器以隔離電網(wǎng);

4)變壓器線圈和磁芯利用率高,、效率高;

5)輸入,、輸出電流連續(xù),以減輕輸入,、輸出濾波任務(wù),,縮小裝置體積和降低對電網(wǎng)的損害;

6)具有較強的抗不平衡能力。

2.2主電路選型

依據(jù)上述選取原則,,經(jīng)過對各類型開關(guān)電源主電路的分析比較,,作者選取由雙端半橋式DC/DC變換器構(gòu)成的功率變換電路作為高頻開關(guān)充電電源的主電路形式,如圖1所示,。

此電路中,,EMI濾波器主要用于抑制交流電網(wǎng)與直流變換電路之間的高頻噪聲干擾。D1~D6構(gòu)成三相橋式不可控整流電路,,將380V交流電轉(zhuǎn)換為直流電,,C0作濾波用,C1,、C2,、S1、S2,、D01,、D02構(gòu)成半橋式DC/AC變換器,將直流電壓逆變?yōu)楦哳l交流方波電壓,,并經(jīng)高頻變壓器T送出,。D7、D8,、L,、C3構(gòu)成變壓器次級整流濾波環(huán)節(jié)。GB為蓄電池,,S3為控制蓄電池放電的開關(guān)管,,R為放電電阻。充電電壓V0與開關(guān)管S1,、S2工作的占空比及變壓器次初級線圈匝數(shù)比成正比,,即[2]V0=·VC0(1)

式中:tON為開關(guān)管在一周期內(nèi)的導(dǎo)通時間;

T為開關(guān)周期,。

因此,,通過改變開關(guān)管的占空比就可調(diào)節(jié)輸出電壓。

充電時,,S1,、S2交替導(dǎo)通相等時段,以便產(chǎn)生等寬方波脈沖,。放電時,,關(guān)斷S1、S2,,觸發(fā)S3導(dǎo)通,,則蓄電池可通過電阻R放電,放電時間由S3導(dǎo)通時間決定,。

半橋式高頻開關(guān)充電電源主電路的主要特點是:

1)輸出功率可達(dá)幾kW,,可滿足蓄電池充電的要求。

2)只有兩只開關(guān)管進(jìn)行功率變換,,簡化了驅(qū)動電路設(shè)計(相對全橋式電路而言),。

3)高頻變壓器原邊繞組在方波脈沖的正負(fù)半周都工作,故繞組利用率高,。 4)開關(guān)管截止期間承受電壓低,,僅為輸入直流電壓值。

5)抗不平衡能力強,。當(dāng)開關(guān)管特性不一致或?qū)〞r間不一致時,,不會引起“單向偏磁”現(xiàn)象,這是推挽式和橋式變換器都不具備的一個突出優(yōu)點,。

3高頻開關(guān)充電電源控制系統(tǒng)設(shè)計

3.1直流系統(tǒng)供電及蓄電池充電對控制系統(tǒng)的要求

1)在電網(wǎng)正常運行時,,高頻開關(guān)充電電源向直流系統(tǒng)供電并給蓄電池浮充電,,此時要求輸出電壓有良好的穩(wěn)壓特性。

2)當(dāng)蓄電池容量欠虧時,,需進(jìn)行補充充電,,為提高充電速度,需采取恒流充電方式,,此時則要求電源有良好的穩(wěn)流特性,。

3)能在一定范圍內(nèi)實現(xiàn)對電流、電壓的連續(xù)調(diào)節(jié),。 4)各種充電方式能自動轉(zhuǎn)換,。

5)蓄電池充滿時能自動停充。

6)能對電流,、電壓,、溫度等各種參數(shù)進(jìn)行檢測以及作出判斷,并采取相應(yīng)保護(hù)措施,。

7)具有四遙功能,,即要求在遠(yuǎn)方設(shè)定參考值、測量充電電流和充電電壓,,并且對系統(tǒng)運行方式進(jìn)行遠(yuǎn)方控制,,還能實現(xiàn)對工作狀態(tài)和故障信號等的遠(yuǎn)方采集。

3.2控制系統(tǒng)組成

如圖2所示,,高頻開關(guān)充電電源的控制系統(tǒng)主要由取樣電路,、信號變換電路、檢測保護(hù)電路,、PWM信號生成電路和驅(qū)動電路等組成,。取樣電路從主電路的輸出采集電流、電壓等信號,,采樣信號與給定值進(jìn)行比較后得到的差值信號經(jīng)過誤差放大器進(jìn)行放大,,以便調(diào)整PWM信號生成電路的輸出信號脈寬。檢測保護(hù)電路通過檢測蓄電池的溫度,、端電壓變化,、出氣率以及輸入、輸出電路的過壓,、過流等情況,,使PWM生成電路改變輸出脈寬或終止脈沖輸出。驅(qū)動電路用于對PWM信號生成電路的輸出PWM信號進(jìn)行功率放大,,以滿足高頻開關(guān)管門(柵)極驅(qū)動要求,,同時實現(xiàn)控制電路與主電路的隔離。


圖3逆變控制信號的形成原理

3.3逆變控制電路

逆變控制電路包括PWM脈沖形成電路及IGBT驅(qū)動電路。為了實現(xiàn)對直流系統(tǒng)的遙信,、遙測,、遙控和遙調(diào),并且滿足高頻開關(guān)充電電源高頻變換控制的要求,,本方案采用INTEL公司生產(chǎn)的87C196KC型單片機(jī)作為主控芯片,。87C196KC軟硬件資源豐富,內(nèi)含8路A/D轉(zhuǎn)換輸入通道和3路PWM信號輸出口,,速度快、效率高,、功能齊全[3],。它不僅能完全取代模擬控制器,方便地實現(xiàn)PID調(diào)節(jié),,而且可以通過改變軟件實現(xiàn)諸如自適應(yīng)控制,、智能控制等各種新型控制策略。此外,,還可利用其通信接口與其他微機(jī)進(jìn)行通信,,便于實現(xiàn)遠(yuǎn)方監(jiān)控。

采用87C196KC型單片機(jī),,有兩種方法可以實現(xiàn)PWM控制信號的輸出:其一是通過PWM信號輸出口,。此時,信號的最高開關(guān)頻率為31.25kHz(16M晶振),,這樣開關(guān)電源實際能達(dá)到的開關(guān)頻率為15.625kHz,。然而,高頻開關(guān)充電電源的開關(guān)頻率在20kHz以上,,所以這種方法雖然軟件開銷小,,卻不能滿足高頻開關(guān)電源對開關(guān)頻率的要求。另一種方法是采用高速輸出口HSO實現(xiàn),。HSO輸出的PWM信號頻率可調(diào),,但控制精度較低,而且軟件開銷很大,。由上可知,,87C196KC輸出的PWM信號都不適宜直接作為高頻開關(guān)充電電源的逆變控制信號,因此,,本方案采用專用的集成PWM控制器SG3525產(chǎn)生PWM脈沖,。其實現(xiàn)原理如圖3所示。

在圖3中,,87C196KC的PWM0口作為模擬輸出接口(D/A轉(zhuǎn)換),。經(jīng)CPU運算后得到的占空比控制信號由PWM0口輸出,并被轉(zhuǎn)換電路變換為直流電壓信號,然后再被加到集成PWM控制器(SG3525)的輸入端口上,。集成控制器產(chǎn)生兩路相位相反的PWM信號,,信號經(jīng)驅(qū)動電路隔離放大后便可控制高頻開關(guān)管(IGBT)的通斷。

SG3525帶有軟啟動電路,、基準(zhǔn)電壓源,、誤差放大器、PWM比較器,、欠壓鎖定電路,、輸出限流和關(guān)斷電路、輸出驅(qū)動電路等,,驅(qū)動能力達(dá)到100mA,。在本文的控制方案中,誤差放大器接為電壓跟隨器方式,,閉環(huán)控制功能由單片機(jī)完成,。

驅(qū)動電路采用EXB841集成芯片[4]。它采用單電源工作,,內(nèi)裝有高隔離電壓(2500V)的光電耦合器,、過流檢測和過流保護(hù)低速切斷電路以及驅(qū)動電路,其信號延遲最大1.5μs,,適用于在40kHz以下頻段工作,。其額定工作電壓為25V,光耦合器輸入電流額定值10mA,,顯然,,SG3525的輸出信號可與之配合。光耦合器的輸出電流為4A,,輸出電壓為0~20V,,完全能滿足IGBT對柵極驅(qū)動信號的要求。

4結(jié)語

本文針對應(yīng)用于變電站直流系統(tǒng)的新型高頻開關(guān)充電電源展開討論,,主要介紹了其主電路和逆變控制電路,。研究表明,半橋式高頻開關(guān)充電電源主電路抗不平衡能力強,、變壓器利用率高,、輸出功率較大、相應(yīng)的驅(qū)動電路不太復(fù)雜,,是高頻開關(guān)充電電源較為理想的主電路形式,。以87C196KC型單片機(jī)和SG3525型集成PWM控制器為主構(gòu)成的逆變控制電路響應(yīng)速度快、控制精度高,,具有比較優(yōu)勢,。由于采用87C196KC作為主控芯片,,充電電源控制系統(tǒng)的各種監(jiān)控功能齊備,完全能滿足變電站綜合自動化技術(shù)對直流系統(tǒng)性能的要求,。

此內(nèi)容為AET網(wǎng)站原創(chuàng),,未經(jīng)授權(quán)禁止轉(zhuǎn)載。